A dynamic distention protocol for whole-organ bladder decellularization: Histological and biomechanical characterization of the acellular matrix

F. Consolo, S. Brizzola, G. Tremolada, V. Grieco, F. Riva, F. Acocella, G. B. Fiore, M. Soncini

Research output: Contribution to journalArticle

Abstract

A combined physical-chemical protocol for whole full-thickness bladder decellularization is proposed, based on organ cyclic distention through repeated infusion/withdrawal of the decellularization agents through the urethra. The dynamic decellularization was intended to enhance cell removal efficiency, facilitating the delivery of detergents within the inner layers of the tissue and the removal of cell debris. The use of mild chemical detergents (hypotonic solution and non-ionic detergent) was employed to limit adverse effects upon matrix 3D ultrastructure. Inspection of the presence of residual DNA and RNA was carried out on decellularized matrices to verify effective cell removal. Histological investigation was focused on assessing the retention of adequate structural and functional components that regulate the biomechanical behaviour of the acellular tissue. Biomechanical properties were evaluated through uniaxial tensile loading tests of tissue strips and through ex vivo filling cystometry to evaluate the whole-organ mechanical response to a physiological-like loading state. According to our results, a dynamic decellularization protocol of 17 h duration with a 5 ml/min detergent infusion flow rate revealed higher DNA removal efficiency than standard static decellularization, resulting in residual DNA content

Original languageEnglish
Pages (from-to)E101-E112
JournalJournal of Tissue Engineering and Regenerative Medicine
Volume10
Issue number2
DOIs
Publication statusPublished - Feb 1 2016

Keywords

  • Biological scaffold
  • Bladder acellular matrix
  • Bladder tissue engineering
  • Whole-organ decellularization

ASJC Scopus subject areas

  • Biomedical Engineering
  • Medicine (miscellaneous)
  • Biomaterials

Fingerprint Dive into the research topics of 'A dynamic distention protocol for whole-organ bladder decellularization: Histological and biomechanical characterization of the acellular matrix'. Together they form a unique fingerprint.

  • Cite this