A functional strategy to characterize expression Quantitative Trait Loci

E Grassi, E Mariella, M Forneris, F Marotta, M Catapano, I Molineris, P Provero

Research output: Contribution to journalArticle

Abstract

The study of genetic variation has been revolutionized by the advent of high-throughput technologies able to determine the complete genomic sequence of thousands of individuals. Understanding the functional relevance of variants is, however, still a difficult task, especially when focusing on non-coding variants. Most of the variants associated with disease by Genome-Wide Association Studies (GWAS) are indeed non-coding, and presumably exert their effects by altering gene regulation. Expression Quantitative Trait Loci (eQTL) studies represent an important step in understanding the functional relevance of regulatory variants. We propose a new strategy to detect and characterize eQTLs, based on the effect of variants on the Total Binding Affinity (TBA) profiles of regulatory regions. Using a large dataset of coupled genome and expression data, we show that TBA-based inference allows the identification of eQTLs not revealed by traditional methods and helps in their interpretation in terms of altered transcription factor binding. © 2017, Springer-Verlag GmbH Germany.
Original languageEnglish
Pages (from-to)1477-1487
Number of pages11
JournalHuman Genetics
Volume136
Issue number11-12
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'A functional strategy to characterize expression Quantitative Trait Loci'. Together they form a unique fingerprint.

  • Cite this

    Grassi, E., Mariella, E., Forneris, M., Marotta, F., Catapano, M., Molineris, I., & Provero, P. (2017). A functional strategy to characterize expression Quantitative Trait Loci. Human Genetics, 136(11-12), 1477-1487. https://doi.org/10.1007/s00439-017-1849-9