A multilaboratory, multicountry study to determine MIC quality control ranges for phenotypic drug susceptibility testing of selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid

Koné Kaniga, Daniela M. Cirillo, Sven Hoffner, Nazir A. Ismail, Devinder Kaur, Nacer Lounis, Beverly Metchock, Gaby E. Pfyffer, Amour Venter

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2×prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain was Mycobacterium tuberculosis H37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: Isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against the M. tuberculosis H37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.

Original languageEnglish
Pages (from-to)2963-2968
Number of pages6
JournalJournal of Clinical Microbiology
Volume54
Issue number12
DOIs
Publication statusPublished - Dec 1 2016

Fingerprint

Linezolid
Clofazimine
Fluoroquinolones
Quality Control
Injections
Pharmaceutical Preparations
Multidrug-Resistant Tuberculosis
Mycobacterium tuberculosis
Prothionamide
Capreomycin
Ethionamide
Pyrazinamide
Ethambutol
Levofloxacin
Kanamycin
Ofloxacin
Niacinamide
Amikacin
Polystyrenes
Isoniazid

ASJC Scopus subject areas

  • Microbiology (medical)

Cite this

A multilaboratory, multicountry study to determine MIC quality control ranges for phenotypic drug susceptibility testing of selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. / Kaniga, Koné; Cirillo, Daniela M.; Hoffner, Sven; Ismail, Nazir A.; Kaur, Devinder; Lounis, Nacer; Metchock, Beverly; Pfyffer, Gaby E.; Venter, Amour.

In: Journal of Clinical Microbiology, Vol. 54, No. 12, 01.12.2016, p. 2963-2968.

Research output: Contribution to journalArticle

@article{a3633de9fea44f9ab19d5f930074ebd8,
title = "A multilaboratory, multicountry study to determine MIC quality control ranges for phenotypic drug susceptibility testing of selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid",
abstract = "Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2×prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain was Mycobacterium tuberculosis H37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: Isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against the M. tuberculosis H37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.",
author = "Kon{\'e} Kaniga and Cirillo, {Daniela M.} and Sven Hoffner and Ismail, {Nazir A.} and Devinder Kaur and Nacer Lounis and Beverly Metchock and Pfyffer, {Gaby E.} and Amour Venter",
year = "2016",
month = "12",
day = "1",
doi = "10.1128/JCM.01138-16",
language = "English",
volume = "54",
pages = "2963--2968",
journal = "Journal of Clinical Microbiology",
issn = "0095-1137",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - A multilaboratory, multicountry study to determine MIC quality control ranges for phenotypic drug susceptibility testing of selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid

AU - Kaniga, Koné

AU - Cirillo, Daniela M.

AU - Hoffner, Sven

AU - Ismail, Nazir A.

AU - Kaur, Devinder

AU - Lounis, Nacer

AU - Metchock, Beverly

AU - Pfyffer, Gaby E.

AU - Venter, Amour

PY - 2016/12/1

Y1 - 2016/12/1

N2 - Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2×prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain was Mycobacterium tuberculosis H37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: Isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against the M. tuberculosis H37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.

AB - Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2×prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain was Mycobacterium tuberculosis H37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: Isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against the M. tuberculosis H37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.

UR - http://www.scopus.com/inward/record.url?scp=84997611192&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84997611192&partnerID=8YFLogxK

U2 - 10.1128/JCM.01138-16

DO - 10.1128/JCM.01138-16

M3 - Article

VL - 54

SP - 2963

EP - 2968

JO - Journal of Clinical Microbiology

JF - Journal of Clinical Microbiology

SN - 0095-1137

IS - 12

ER -