A novel approach to estimate trabecular bone anisotropy using a database approach

Javad Hazrati Marangalou, Keita Ito, Matteo Cataldi, Fulvia Taddei, Bert Van Rietbergen

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 μm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2. mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3% and ultimate load by 14.5%, while these differences for the DB-derived orthotropic models were only 4.9% and 3.1% respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.

Original languageEnglish
Pages (from-to)2356-2362
Number of pages7
JournalJournal of Biomechanics
Volume46
Issue number14
DOIs
Publication statusPublished - Sep 27 2013

Fingerprint

Anisotropy
Bone
Databases
Bone and Bones
Femur
Computerized tomography
Finite Element Analysis
Cancellous Bone
Tensors
Plastics
Materials properties
Stiffness

Keywords

  • Anisotropy
  • Bone
  • Database approach
  • Finite element method

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Rehabilitation
  • Biophysics
  • Biomedical Engineering

Cite this

A novel approach to estimate trabecular bone anisotropy using a database approach. / Hazrati Marangalou, Javad; Ito, Keita; Cataldi, Matteo; Taddei, Fulvia; Van Rietbergen, Bert.

In: Journal of Biomechanics, Vol. 46, No. 14, 27.09.2013, p. 2356-2362.

Research output: Contribution to journalArticle

Hazrati Marangalou, Javad ; Ito, Keita ; Cataldi, Matteo ; Taddei, Fulvia ; Van Rietbergen, Bert. / A novel approach to estimate trabecular bone anisotropy using a database approach. In: Journal of Biomechanics. 2013 ; Vol. 46, No. 14. pp. 2356-2362.
@article{8f995ce0e45b451cb3dc638ae4fc3aa4,
title = "A novel approach to estimate trabecular bone anisotropy using a database approach",
abstract = "Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 μm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2. mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3{\%} and ultimate load by 14.5{\%}, while these differences for the DB-derived orthotropic models were only 4.9{\%} and 3.1{\%} respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.",
keywords = "Anisotropy, Bone, Database approach, Finite element method",
author = "{Hazrati Marangalou}, Javad and Keita Ito and Matteo Cataldi and Fulvia Taddei and {Van Rietbergen}, Bert",
year = "2013",
month = "9",
day = "27",
doi = "10.1016/j.jbiomech.2013.07.042",
language = "English",
volume = "46",
pages = "2356--2362",
journal = "Journal of Biomechanics",
issn = "0021-9290",
publisher = "Elsevier Limited",
number = "14",

}

TY - JOUR

T1 - A novel approach to estimate trabecular bone anisotropy using a database approach

AU - Hazrati Marangalou, Javad

AU - Ito, Keita

AU - Cataldi, Matteo

AU - Taddei, Fulvia

AU - Van Rietbergen, Bert

PY - 2013/9/27

Y1 - 2013/9/27

N2 - Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 μm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2. mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3% and ultimate load by 14.5%, while these differences for the DB-derived orthotropic models were only 4.9% and 3.1% respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.

AB - Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 μm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2. mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3% and ultimate load by 14.5%, while these differences for the DB-derived orthotropic models were only 4.9% and 3.1% respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.

KW - Anisotropy

KW - Bone

KW - Database approach

KW - Finite element method

UR - http://www.scopus.com/inward/record.url?scp=84883813665&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883813665&partnerID=8YFLogxK

U2 - 10.1016/j.jbiomech.2013.07.042

DO - 10.1016/j.jbiomech.2013.07.042

M3 - Article

C2 - 23972430

AN - SCOPUS:84883813665

VL - 46

SP - 2356

EP - 2362

JO - Journal of Biomechanics

JF - Journal of Biomechanics

SN - 0021-9290

IS - 14

ER -