A novel spatiotemporal tool for the automatic classification of fMRI noise based on Independent Component Analysis

E. Tassi, E. Maggioni, S. Cerutti, P. Brambilla, A. M. Bianchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, a semi-automatic, easy-to-use classification method for the identification and removal of fMRI noise is proposed and tested. The method relies on subject-level spatial independent component analysis (ICA) of fMRI data. Starting from a reference set of labeled independent components (ICs), novel ICs are classified as physiological/artefactual by combining a spatial correlation (SC) analysis with the reference ICs and relative power spectral (PS) analysis. Here, ICs from a task-based fMRI dataset were used as reference. SC and SP thresholds were set using a test dataset (5 subjects, same fMRI protocol) based on Receiving Operating Characteristic curves. The tool performance and versatility were measured on a resting-state fMRI dataset (5 subjects). Our results show that the method can automatically identify noise-related ICs with accuracy, specificity and sensitivity higher than 80% across different fMRI protocols. These findings also suggest that the reference set provided in the present study might be used to mark ICs coming from independent taskrelated or resting-state fMRI datasets.Clinical relevance - The new method will be included in a userfriendly, open-source tool for removal of noisy contributions from fMRI datasets to be used in clinical and research practices.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1718-1721
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A novel spatiotemporal tool for the automatic classification of fMRI noise based on Independent Component Analysis'. Together they form a unique fingerprint.

Cite this