A protective variant of the autophagy receptor CALCOCO2/NDP52 in Multiple Sclerosis (MS)

Anthea Di Rita, Flavie Strappazzon

Research output: Contribution to journalArticlepeer-review


Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, which has been found associated with dysfunctional mitochondria. In order to advance our understanding of the complex molecular mechanisms underlying this disease, we analyzed mitophagy, a process fundamental for the elimination of damaged mitochondria through the autophagic process, in peripheral blood mononuclear cells (PBMCs) of MS patients. Through a genetic analysis carried out on 203 MS patients and 1000 healthy controls, we identified a natural variant of CALCOCO2/NDP52, a well-known autophagic receptor, associated with and protective in MS. Structural modeling of the CALCOCO2 variant and functional studies highlighted an amino acid substitution (G140E) located near the LC3-interacting region (LIR) motif of CALCOCO2, crucial in controlling mitophagy. In addition, we found that among PBMCs, CALCOCO2 is mainly expressed in B cells and, by mediating mitophagy, it reduces pro-inflammatory cytokine production following stimulation of these cells. Here we summarize these recent findings, discuss the putative protective roles of CALCOCO2 in B cells and its novel association with an autoimmune disease such as MS.

Original languageEnglish
Publication statusAccepted/In press - 2021


  • B cells
  • inflammation
  • mitochondria
  • mitophagy
  • multiple sclerosis

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'A protective variant of the autophagy receptor CALCOCO2/NDP52 in Multiple Sclerosis (MS)'. Together they form a unique fingerprint.

Cite this