A robust and self-paced BCI system based on a four class SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication

Sergio Parini, Luca Maggi, Anna C. Turconi, Giuseppe Andreoni

Research output: Contribution to journalArticle

Abstract

In this paper, we present, with particular focus on the adopted processing and identification chain and protocol-related solutions, a whole self-paced brain-computer interface system based on a 4-class steady-state visual evoked potentials (SSVEPs) paradigm. The proposed system incorporates an automated spatial filtering technique centred on the common spatial patterns (CSPs) method, an autoscaled and effective signal features extraction which is used for providing an unsupervised biofeedback, and a robust self-paced classifier based on the discriminant analysis theory. The adopted operating protocol is structured in a screening, training, and testing phase aimed at collecting user-specific information regarding best stimulation frequencies, optimal sources identification, and overall system processing chain calibration in only a few minutes. The system, validated on 11 healthy/pathologic subjects, has proven to be reliable in terms of achievable communication speed (up to 70bit/min) and very robust to false positive identifications.

Original languageEnglish
Article number864564
JournalComputational Intelligence and Neuroscience
Volume2009
DOIs
Publication statusPublished - 2009

    Fingerprint

ASJC Scopus subject areas

  • Computer Science(all)
  • Mathematics(all)
  • Neuroscience(all)

Cite this