A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts

on behalf of the FRAILOMIC initiative, David Gomez-Cabrero, Stefan Walter, Imad Abugessaisa, Rebeca Miñambres-Herraiz, Lucia Bernad Palomares, Lee Butcher, Jorge D. Erusalimsky, Francisco Jose Garcia-Garcia, José Carnicero, Timothy C. Hardman, Harald Mischak, Petra Zürbig, Matthias Hackl, Johannes Grillari, Edoardo Fiorillo, Francesco Cucca, Matteo Cesari, Isabelle Carrie, Marco ColpoStefania Bandinelli, Catherine Feart, Karine Peres, Jean François Dartigues, Catherine Helmer, José Viña, Gloria Olaso, Irene García-Palmero, Jorge García Martínez, Pidder Jansen-Dürr, Tilman Grune, Daniela Weber, Giuseppe Lippi, Chiara Bonaguri, Alan J. Sinclair, Jesper Tegner, Leocadio Rodriguez-Mañas

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts'. Together they form a unique fingerprint.

Agriculture & Biology

Medicine & Life Sciences