A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior

Ingrid Ehrmann, Matthew R Gazzara, Vittoria Pagliarini, Caroline Dalgliesh, Mahsa Kheirollahi-Chadegani, Yaobo Xu, Eleonora Cesari, Marina Danilenko, Marie Maclennan, Kate Lowdon, Tanja Vogel, Piia Keskivali-Bond, Sara Wells, Heather Cater, Philippe Fort, Mauro Santibanez-Koref, Silvia Middei, Claudio Sette, Gavin J. Clowry, Yoseph BarashMark O Cunningham, David J. Elliott

Research output: Contribution to journalArticlepeer-review


The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior.

Original languageEnglish
Pages (from-to)3269-3280
Number of pages12
JournalCell Reports
Issue number12
Publication statusPublished - Dec 20 2016


  • Journal Article


Dive into the research topics of 'A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior'. Together they form a unique fingerprint.

Cite this