A subpopulation of circulating endothelial cells express CD109 and is enriched in the blood of cancer patients

Patrizia Mancuso, Angelica Calleri, Giuliana Gregato, Valentina Labanca, Jessica Quarna, Pierluigi Antoniotti, Lucia Cuppini, Gaetano Finocchiaro, Marica Eoli, Vittorio Rosti, Francesco Bertolini

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment. Methodology/Principal Findings: Currently CECs are identified as positive for a nuclear binding antigen (DNA+), negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin) and CLDN5 (Claudin5), two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1) were expressed in CD109+CECs+ but not in CD146+CECs. Conclusion: Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in patients with glioblastoma. The role of CD109 expression in cancer vessel-specific endothelial cells deserves to be further investigated by gene expression studies.

Original languageEnglish
Article numbere114713
JournalPLoS One
Volume9
Issue number12
DOIs
Publication statusPublished - Dec 15 2014

Fingerprint

Endothelial cells
endothelial cells
Blood
Endothelial Cells
neoplasms
blood
Neoplasms
Glioblastoma
Gene expression
antigens
Antigens
gene expression
Circulating Neoplastic Cells
Gene Expression
Nuclear Antigens
Flow cytometry
cadherins
Cadherins
angiogenesis
endothelium

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

A subpopulation of circulating endothelial cells express CD109 and is enriched in the blood of cancer patients. / Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Quarna, Jessica; Antoniotti, Pierluigi; Cuppini, Lucia; Finocchiaro, Gaetano; Eoli, Marica; Rosti, Vittorio; Bertolini, Francesco.

In: PLoS One, Vol. 9, No. 12, e114713, 15.12.2014.

Research output: Contribution to journalArticle

@article{eb2badfad75b4755931835aa72fd854f,
title = "A subpopulation of circulating endothelial cells express CD109 and is enriched in the blood of cancer patients",
abstract = "Background: The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment. Methodology/Principal Findings: Currently CECs are identified as positive for a nuclear binding antigen (DNA+), negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin) and CLDN5 (Claudin5), two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1) were expressed in CD109+CECs+ but not in CD146+CECs. Conclusion: Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in patients with glioblastoma. The role of CD109 expression in cancer vessel-specific endothelial cells deserves to be further investigated by gene expression studies.",
author = "Patrizia Mancuso and Angelica Calleri and Giuliana Gregato and Valentina Labanca and Jessica Quarna and Pierluigi Antoniotti and Lucia Cuppini and Gaetano Finocchiaro and Marica Eoli and Vittorio Rosti and Francesco Bertolini",
year = "2014",
month = "12",
day = "15",
doi = "10.1371/journal.pone.0114713",
language = "English",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - A subpopulation of circulating endothelial cells express CD109 and is enriched in the blood of cancer patients

AU - Mancuso, Patrizia

AU - Calleri, Angelica

AU - Gregato, Giuliana

AU - Labanca, Valentina

AU - Quarna, Jessica

AU - Antoniotti, Pierluigi

AU - Cuppini, Lucia

AU - Finocchiaro, Gaetano

AU - Eoli, Marica

AU - Rosti, Vittorio

AU - Bertolini, Francesco

PY - 2014/12/15

Y1 - 2014/12/15

N2 - Background: The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment. Methodology/Principal Findings: Currently CECs are identified as positive for a nuclear binding antigen (DNA+), negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin) and CLDN5 (Claudin5), two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1) were expressed in CD109+CECs+ but not in CD146+CECs. Conclusion: Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in patients with glioblastoma. The role of CD109 expression in cancer vessel-specific endothelial cells deserves to be further investigated by gene expression studies.

AB - Background: The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment. Methodology/Principal Findings: Currently CECs are identified as positive for a nuclear binding antigen (DNA+), negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin) and CLDN5 (Claudin5), two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1) were expressed in CD109+CECs+ but not in CD146+CECs. Conclusion: Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in patients with glioblastoma. The role of CD109 expression in cancer vessel-specific endothelial cells deserves to be further investigated by gene expression studies.

UR - http://www.scopus.com/inward/record.url?scp=84918593064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84918593064&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0114713

DO - 10.1371/journal.pone.0114713

M3 - Article

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e114713

ER -