A wearable system for the seismocardiogram assessment in daily life conditions

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Seismocardiogram (SCG) is the recording of the minute body accelerations induced by the heart activity, and reflects mechanical aspects of heart contraction and blood ejection. So far, most of the available systems for the SCG assessment are designed to be used in a laboratory or in controlled behavioral and environmental conditions. In this paper we propose a modified version of a textile-based wearable device for the unobtrusive recording of ECG, respiration and accelerometric data (the MagIC system), to assess the 3d sternal SCG in daily life. SCG is characterized by an extremely low magnitude of the accelerations (in the order of g x 10 3), and is masked by major body accelerations induced by locomotion. Thus in daily life recordings, SCG can be measured whenever the subject is still. We observed that about 30 seconds of motionless behavior are sufficient for a stable estimate of the average SCG waveform, independently from the subject's posture. Since it is likely that during spontaneous behavior the subject may stay still for at least 30 seconds several times in a day, it is expected that the SCG could be repeatedly estimated and tracked over time through a prolonged data recording. These observations represent the first testing of the system in the assessment of SCG out of a laboratory environment, and open the possibility to perform SCG studies in a wide range of everyday conditions without interfering with the subject's activity tasks.

Original languageEnglish
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Pages4263-4266
Number of pages4
DOIs
Publication statusPublished - 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Other

Other33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Country/TerritoryUnited States
CityBoston, MA
Period8/30/119/3/11

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'A wearable system for the seismocardiogram assessment in daily life conditions'. Together they form a unique fingerprint.

Cite this