TY - JOUR
T1 - Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions
AU - Kirienko, Margarita
AU - Cozzi, Luca
AU - Rossi, Alexia
AU - Voulaz, Emanuele
AU - Antunovic, Lidija
AU - Fogliata, Antonella
AU - Chiti, Arturo
AU - Sollini, Martina
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Purpose: To evaluate the ability of CT and PET radiomics features to classify lung lesions as primary or metastatic, and secondly to differentiate histological subtypes of primary lung cancers. Methods: A cohort of 534 patients with lung lesions were retrospectively studied. Radiomics texture features were extracted using the LIFEx package from semiautomatically segmented PET and CT images. Histology data were recorded in all patients. The patient cohort was divided into a training and a validation group and linear discriminant analysis (LDA) was performed to classify the lesions using both direct and backward stepwise methods. The robustness of the procedure was tested by repeating the entire process 100 times with different assignments to the training and validation groups. Scoring metrics included analysis of the receiver operating characteristic curves in terms of area under the curve (AUC), sensitivity, specificity and accuracy. Results: Radiomics features extracted from CT and PET datasets were able to differentiate primary tumours from metastases in both the training and the validation group (AUCs 0.79 ± 0.03 and 0.70 ± 0.04, respectively, from the CT dataset; AUCs 0.92 ± 0.01 and 0.91 ± 0.03, respectively, from the PET dataset). The AUC cut-off thresholds identified by LDA using direct and backward elimination strategies were −0.79 ± 0.06 and −0.81 ± 0.08, respectively (CT dataset) and −0.69 ± 0.05 and −0.68 ± 0.04, respectively (PET dataset). For differentiation between primary subgroups based on CT features, the AUCs in the training and validation groups were 0.81 ± 0.02 and 0.69 ± 0.04 for adenocarcinoma (Adc) vs. squamous cell carcinoma (Sqc) or “Other”, 0.85 ± 0.02 and 0.70 ± 0.05 for Sqc vs. Adc or Other, and 0.77 ± 0.03 and 0.57 ± 0.05 for Other vs. Adc or Sqc. The same analyses for the PET data revealed AUCs of 0.90 ± 0.10 and 0.80 ± 0.04, 0.80 ± 0.02 and 0.61 ± 0.06, and 0.97 ± 0.01 and 0.88 ± 0.04, respectively. Conclusion: PET radiomics features were able to differentiate between primary and metastatic lung lesions and showed the potential to identify primary lung cancer subtypes.
AB - Purpose: To evaluate the ability of CT and PET radiomics features to classify lung lesions as primary or metastatic, and secondly to differentiate histological subtypes of primary lung cancers. Methods: A cohort of 534 patients with lung lesions were retrospectively studied. Radiomics texture features were extracted using the LIFEx package from semiautomatically segmented PET and CT images. Histology data were recorded in all patients. The patient cohort was divided into a training and a validation group and linear discriminant analysis (LDA) was performed to classify the lesions using both direct and backward stepwise methods. The robustness of the procedure was tested by repeating the entire process 100 times with different assignments to the training and validation groups. Scoring metrics included analysis of the receiver operating characteristic curves in terms of area under the curve (AUC), sensitivity, specificity and accuracy. Results: Radiomics features extracted from CT and PET datasets were able to differentiate primary tumours from metastases in both the training and the validation group (AUCs 0.79 ± 0.03 and 0.70 ± 0.04, respectively, from the CT dataset; AUCs 0.92 ± 0.01 and 0.91 ± 0.03, respectively, from the PET dataset). The AUC cut-off thresholds identified by LDA using direct and backward elimination strategies were −0.79 ± 0.06 and −0.81 ± 0.08, respectively (CT dataset) and −0.69 ± 0.05 and −0.68 ± 0.04, respectively (PET dataset). For differentiation between primary subgroups based on CT features, the AUCs in the training and validation groups were 0.81 ± 0.02 and 0.69 ± 0.04 for adenocarcinoma (Adc) vs. squamous cell carcinoma (Sqc) or “Other”, 0.85 ± 0.02 and 0.70 ± 0.05 for Sqc vs. Adc or Other, and 0.77 ± 0.03 and 0.57 ± 0.05 for Other vs. Adc or Sqc. The same analyses for the PET data revealed AUCs of 0.90 ± 0.10 and 0.80 ± 0.04, 0.80 ± 0.02 and 0.61 ± 0.06, and 0.97 ± 0.01 and 0.88 ± 0.04, respectively. Conclusion: PET radiomics features were able to differentiate between primary and metastatic lung lesions and showed the potential to identify primary lung cancer subtypes.
KW - CT
KW - Lung adenocarcinoma, squamous cell carcinoma
KW - Lung metastases
KW - PET/CT
KW - Radiomics
KW - Solitary lung nodule
KW - Texture analysis, lung cancer
UR - http://www.scopus.com/inward/record.url?scp=85045065074&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045065074&partnerID=8YFLogxK
U2 - 10.1007/s00259-018-3987-2
DO - 10.1007/s00259-018-3987-2
M3 - Article
C2 - 29623375
AN - SCOPUS:85045065074
VL - 45
SP - 1649
EP - 1660
JO - European Journal of Pediatrics
JF - European Journal of Pediatrics
SN - 0340-6199
IS - 10
ER -