Activity of DNA-targeted C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates against aerobically and hypoxically grown Mycobacterium tuberculosis under acidic and neutral conditions

Angelo Iacobino, Federico Giannoni, Lanfranco Fattorini, Federico Brucoli

Research output: Contribution to journalArticlepeer-review

Abstract

Mycobacterium tuberculosis (Mtb) is the aetiological agent of tuberculosis, the leading cause of death worldwide from a single infectious agent. Mtb is a highly adaptable human pathogen that might enter a dormant non-replicating (NR), drug-tolerant stage. Reactivation of dormant Mtb can lead to active disease. Antibiotic treatments of active and latent tuberculosis are long, complex and may fail to fully eradicate the infection. Therefore, it is imperative to identify novel compounds with new mechanisms of action active against NR bacilli. Dormant Mtb habitat is mostly thought to be the pH-neutral and hypoxic caseous granuloma. We have used the Wayne culture model to reproduce this environment and tested the activities of two DNA-targeted agents, C8-linked-pyrrolobenzodiazepine(PBD)–polyamide conjugates 1 and 2, against Mtb grown in aerobic and hypoxic conditions in both acidic and pH-neutral media. PBD 2 showed growth inhibitory activity at 5.1 µg/ml against 19-day-old hypoxic NR Mtb cultures with 1.8 log10 CFU reduction on day 21 at pH 7.3. PBD 2 was particularly effective against 5-day-old aerobic cells at pH 7.3, with CFU reduction (>6.8 log10) on day 21 at 5.1 µg/ml being identical to that of rifampin at 8 µg/ml. PBD 2 qualifies as a promising lead against aerobic and NR Mtb.

Original languageEnglish
Pages (from-to)831-834
Number of pages4
JournalJournal of Antibiotics
Volume71
Issue number9
DOIs
Publication statusPublished - Sep 1 2018

ASJC Scopus subject areas

  • Pharmacology
  • Drug Discovery

Fingerprint Dive into the research topics of 'Activity of DNA-targeted C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates against aerobically and hypoxically grown Mycobacterium tuberculosis under acidic and neutral conditions'. Together they form a unique fingerprint.

Cite this