Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia

Peter L. Nesper, Fabio Scarinci, Amani A. Fawzi

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) nonperfusion. Eleven eyes from 11 patients (6 women, age 31-68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP nonperfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)- OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT.

Original languageEnglish
Article numbere0169926
JournalPLoS One
Volume12
Issue number1
DOIs
Publication statusPublished - Jan 1 2017

Fingerprint

Adaptive optics
plexus
Angiography
ischemia
optics
photoreceptors
Ophthalmoscopy
Optical tomography
Ischemia
diabetic retinopathy
lasers
tomography
Scanning
eyes
Optical Coherence Tomography
Lasers
Diabetic Retinopathy
Imaging techniques
image analysis
oxygen requirement

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia. / Nesper, Peter L.; Scarinci, Fabio; Fawzi, Amani A.

In: PLoS One, Vol. 12, No. 1, e0169926, 01.01.2017.

Research output: Contribution to journalArticle

@article{cf098f5024bd4b9aa879640860821c7e,
title = "Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia",
abstract = "Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) nonperfusion. Eleven eyes from 11 patients (6 women, age 31-68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP nonperfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)- OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT.",
author = "Nesper, {Peter L.} and Fabio Scarinci and Fawzi, {Amani A.}",
year = "2017",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0169926",
language = "English",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

TY - JOUR

T1 - Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia

AU - Nesper, Peter L.

AU - Scarinci, Fabio

AU - Fawzi, Amani A.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) nonperfusion. Eleven eyes from 11 patients (6 women, age 31-68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP nonperfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)- OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT.

AB - Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) nonperfusion. Eleven eyes from 11 patients (6 women, age 31-68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP nonperfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)- OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT.

UR - http://www.scopus.com/inward/record.url?scp=85009074841&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85009074841&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0169926

DO - 10.1371/journal.pone.0169926

M3 - Article

C2 - 28068435

AN - SCOPUS:85009074841

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 1

M1 - e0169926

ER -