TY - JOUR
T1 - Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates l-DOPA-induced dyskinesia in dopamine-denervated mice
AU - Mango, Dalila
AU - Bonito-Oliva, Alessandra
AU - Ledonne, Ada
AU - Cappellacci, Loredana
AU - Petrelli, Riccardo
AU - Nisticò, Robert
AU - Berretta, Nicola
AU - Fisone, Gilberto
AU - Mercuri, Nicola Biagio
PY - 2014/11/1
Y1 - 2014/11/1
N2 - γ-Aminobutyric acid A receptor (GABAAR)-mediated postsynaptic currents were recorded in brain slices from substantia nigra pars reticulate neurons. The selective adenosine A1 receptor (A1R) antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), increased the frequency, but not the amplitude of spontaneous inhibitory post-synaptic currents (IPSCs) in the presence of the dopamine D1 receptor agonist SKF 38393 (SKF) and phosphodiesterase 10A inhibitors (papaverine or AE90074). Under these conditions, DPCPX also increased the amplitude of evoked IPSCs (eIPSCs). The effect of DPCPX was also examined in a mouse model of Parkinson's disease (PD), generated by unilateral denervation of the dopaminergic input to the striatum. In this model, SKF alone was sufficient to increase sIPSCs frequency and eIPSCs amplitude, and these effects were not potentiated by DPCPX. To confirm a depressive effect of A1Rs on the synaptic release of GABA we used the selective A1R agonist 5'-chloro-5'-deoxy-N6-(±)-(endo-norborn-2-yl)adenosine (5'Cl5'd-(±)-ENBA) which has limited peripheral actions. We found that 5'Cl5'd-(±)-ENBA decreased sIPSCs frequency, without affecting their amplitude, and decreased eIPSCs amplitude. Importantly, in the PD mouse model, 5'Cl5'd-(±)-ENBA prevented the increase in sIPSC frequency and eIPSC amplitude produced by SKF. Since exaggerated DA transmission along the striato-nigral pathway is involved in the motor complications (e.g. dyskinesia) caused by prolonged and intermittent administration of l-DOPA, we examined the effect of A1R activation in mice with unilateral DA denervation. We found that 5'Cl5'd-(±)-ENBA, administered in combination with l-DOPA, reduced the development of abnormal involuntary movements. These results indicate the potential benefit of A1R agonists for the treatment of l-DOPA-induced dyskinesia and hyperkinetic disorders providing a mechanistic framework for the study of the interaction between DA and adenosine in the striatonigral system.
AB - γ-Aminobutyric acid A receptor (GABAAR)-mediated postsynaptic currents were recorded in brain slices from substantia nigra pars reticulate neurons. The selective adenosine A1 receptor (A1R) antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), increased the frequency, but not the amplitude of spontaneous inhibitory post-synaptic currents (IPSCs) in the presence of the dopamine D1 receptor agonist SKF 38393 (SKF) and phosphodiesterase 10A inhibitors (papaverine or AE90074). Under these conditions, DPCPX also increased the amplitude of evoked IPSCs (eIPSCs). The effect of DPCPX was also examined in a mouse model of Parkinson's disease (PD), generated by unilateral denervation of the dopaminergic input to the striatum. In this model, SKF alone was sufficient to increase sIPSCs frequency and eIPSCs amplitude, and these effects were not potentiated by DPCPX. To confirm a depressive effect of A1Rs on the synaptic release of GABA we used the selective A1R agonist 5'-chloro-5'-deoxy-N6-(±)-(endo-norborn-2-yl)adenosine (5'Cl5'd-(±)-ENBA) which has limited peripheral actions. We found that 5'Cl5'd-(±)-ENBA decreased sIPSCs frequency, without affecting their amplitude, and decreased eIPSCs amplitude. Importantly, in the PD mouse model, 5'Cl5'd-(±)-ENBA prevented the increase in sIPSC frequency and eIPSC amplitude produced by SKF. Since exaggerated DA transmission along the striato-nigral pathway is involved in the motor complications (e.g. dyskinesia) caused by prolonged and intermittent administration of l-DOPA, we examined the effect of A1R activation in mice with unilateral DA denervation. We found that 5'Cl5'd-(±)-ENBA, administered in combination with l-DOPA, reduced the development of abnormal involuntary movements. These results indicate the potential benefit of A1R agonists for the treatment of l-DOPA-induced dyskinesia and hyperkinetic disorders providing a mechanistic framework for the study of the interaction between DA and adenosine in the striatonigral system.
KW - Adenosine
KW - Dopamine
KW - Dyskinesia
KW - GABAergic terminals
KW - Levodopa
KW - Mice
KW - Substantia nigra pars reticulata
UR - http://www.scopus.com/inward/record.url?scp=84908519070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908519070&partnerID=8YFLogxK
U2 - 10.1016/j.expneurol.2014.08.022
DO - 10.1016/j.expneurol.2014.08.022
M3 - Article
C2 - 25173217
AN - SCOPUS:84908519070
VL - 261
SP - 733
EP - 743
JO - Experimental Neurology
JF - Experimental Neurology
SN - 0014-4886
ER -