TY - JOUR
T1 - Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas
AU - Piccardo, Arnoldo
AU - Tortora, Domenico
AU - Mascelli, Samantha
AU - Severino, Mariasavina
AU - Piatelli, Gianluca
AU - Consales, Alessandro
AU - Pescetto, Marco
AU - Biassoni, Veronica
AU - Schiavello, Elisabetta
AU - Massollo, Michela
AU - Verrico, Antonio
AU - Milanaccio, Claudia
AU - Garrè, Maria Luisa
AU - Rossi, Andrea
AU - Morana, Giovanni
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Purpose: The aim of this study was to investigate MRI-derived diffusion weighted imaging (DWI), 1H-MR spectroscopy (1H-MRS) and arterial spin labeling (ASL) perfusion imaging in comparison with 18F-dihydroxyphenylalanine (DOPA) PET with respect to diagnostic evaluation of pediatric diffuse midline gliomas (DMG) H3K27M-mutant and wild-type. Methods: We retrospectively analyzed 22 pediatric patients with DMG histologically proved and molecularly classified as H3K27M-mutant (12 subjects) and wild-type (10 subjects) who underwent DWI, 1H-MRS, and ASL performed within 2 weeks of 18F-DOPA PET. DWI-derived relative minimum apparent diffusion coefficient (rADC min), 1H-MRS data [choline/N-acetylaspartate (Cho/NAA), choline/creatine (Cho/Cr), and presence of lactate] and relative ASL-derived cerebral blood flow max (rCBF max) were compared with 18F-DOPA uptake Tumor/Normal tissue (T/N) and Tumor/Striatum (T/S) ratios, and correlated with histological and molecular features of DMG. Statistics included Pearson’s chi-square and Mann-Whitney U tests, Spearman’s rank correlation and receiver operating characteristic (ROC) analysis. Results: The highest degrees of correlation among different techniques were found between T/S, rADC min and Cho/NAA ratio (p < 0.01), and between rCBF max and rADC min (p < 0.01). Significant differences between histologically classified low- and high-grade DMG, independently of H3K27M-mutation, were found among all imaging techniques (p ≤ 0.02). Significant differences in terms of rCBF max, rADC min, Cho/NAA and 18F-DOPA uptake were also found between molecularly classified mutant and wild-type DMG (p ≤ 0.02), even though wild-type DMG included low-grade astrocytomas, not present among mutant DMG. When comparing only histologically defined high-grade mutant and wild-type DMG, only the 18F-DOPA PET data T/S demonstrated statistically significant differences independently of histology (p < 0.003). ROC analysis demonstrated that T/S ratio was the best parameter for differentiating mutant from wild-type DMG (AUC 0.94, p < 0.001). Conclusions: Advanced MRI and 18F-DOPA PET characteristics of DMG depend on histological features; however, 18F-DOPA PET-T/S was the only parameter able to discriminate H3K27M-mutant from wild-type DMG independently of histology.
AB - Purpose: The aim of this study was to investigate MRI-derived diffusion weighted imaging (DWI), 1H-MR spectroscopy (1H-MRS) and arterial spin labeling (ASL) perfusion imaging in comparison with 18F-dihydroxyphenylalanine (DOPA) PET with respect to diagnostic evaluation of pediatric diffuse midline gliomas (DMG) H3K27M-mutant and wild-type. Methods: We retrospectively analyzed 22 pediatric patients with DMG histologically proved and molecularly classified as H3K27M-mutant (12 subjects) and wild-type (10 subjects) who underwent DWI, 1H-MRS, and ASL performed within 2 weeks of 18F-DOPA PET. DWI-derived relative minimum apparent diffusion coefficient (rADC min), 1H-MRS data [choline/N-acetylaspartate (Cho/NAA), choline/creatine (Cho/Cr), and presence of lactate] and relative ASL-derived cerebral blood flow max (rCBF max) were compared with 18F-DOPA uptake Tumor/Normal tissue (T/N) and Tumor/Striatum (T/S) ratios, and correlated with histological and molecular features of DMG. Statistics included Pearson’s chi-square and Mann-Whitney U tests, Spearman’s rank correlation and receiver operating characteristic (ROC) analysis. Results: The highest degrees of correlation among different techniques were found between T/S, rADC min and Cho/NAA ratio (p < 0.01), and between rCBF max and rADC min (p < 0.01). Significant differences between histologically classified low- and high-grade DMG, independently of H3K27M-mutation, were found among all imaging techniques (p ≤ 0.02). Significant differences in terms of rCBF max, rADC min, Cho/NAA and 18F-DOPA uptake were also found between molecularly classified mutant and wild-type DMG (p ≤ 0.02), even though wild-type DMG included low-grade astrocytomas, not present among mutant DMG. When comparing only histologically defined high-grade mutant and wild-type DMG, only the 18F-DOPA PET data T/S demonstrated statistically significant differences independently of histology (p < 0.003). ROC analysis demonstrated that T/S ratio was the best parameter for differentiating mutant from wild-type DMG (AUC 0.94, p < 0.001). Conclusions: Advanced MRI and 18F-DOPA PET characteristics of DMG depend on histological features; however, 18F-DOPA PET-T/S was the only parameter able to discriminate H3K27M-mutant from wild-type DMG independently of histology.
KW - Arterial spin labeling
KW - Diffuse midline glioma
KW - Diffusion weighted imaging
KW - DOPA PET
KW - Magnetic resonance spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85064922214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064922214&partnerID=8YFLogxK
U2 - 10.1007/s00259-019-04333-4
DO - 10.1007/s00259-019-04333-4
M3 - Article
C2 - 31030232
AN - SCOPUS:85064922214
VL - 46
SP - 1685
EP - 1694
JO - European Journal of Pediatrics
JF - European Journal of Pediatrics
SN - 0340-6199
IS - 8
ER -