TY - JOUR
T1 - Adverse effects of in vitro GenX exposure on rat thyroid cell viability, DNA integrity and thyroid-related genes expression
AU - Coperchini, Francesca
AU - Croce, Laura
AU - Denegri, Marco
AU - Pignatti, Patrizia
AU - Agozzino, Manuela
AU - Netti, Giuseppe Stefano
AU - Imbriani, Marcello
AU - Rotondi, Mario
AU - Chiovato, Luca
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9
Y1 - 2020/9
N2 - The hexafluoropropylene-oxide-dimer-acid (GenX) is a short-chain perfluoroalkyl substance that was recently introduced following the phase out of PFOA, as an alternative for the process of polymerization. GenX was detected at high concentrations in rivers, drinking water and in sera of exposed workers and recent findings suggested its potential dangerousness for human health. Aim of the study was to assess the consequences of GenX exposure on in vitro thyroid cells with particular attention to the effects on cell-viability, proliferation, DNA-damage and in the thyroid-related genes expression. FRTL-5 rat-thyroid cell line were incubated with increasing concentrations of GenX for 24 h, 48 h and 72 h to assess cell viability by WST-1. DNA-damage was assessed by comet assay and further confirmed by micronucleus assay. The proliferation of survived cells was measured by staining with crystal violet and evaluation of its optical density after incubation with SDS. Changes in TTF-1, Pax8, Tg, TSH-R, NIS and TPO genes expression were evaluated by RT-PCR. GenX exposure reduced FRTL-5 viability in a time and dose-dependent manner (24 h: ANOVA F = 22.286; p < 0.001; 48 h: F = 43.253, p < 0.001; 72 h: F = 49.708, p < 0.001). Moreover, GenX exerted a genotoxic effect, as assessed by comet assay (significant increase in tail-length, olive-tail-moment and percentage of tail-DNA) and micronucleus assay, both at cytotoxic and non-cytotoxic concentrations. Exposure to GenX at concentrations non-cytotoxic exerted a significant lowering of the expression of the regulatory gene TTF-1 (p < 0.05 versus untreated) and higher expression of Pax-8 (p < 0.05 versus untreated) and a down-regulation of NIS (p < 0.05 versus untreated). In addition, cells survived to GenX exposure showed a reduced re-proliferation ability (24 h: ANOVA F = 11,941; p < 0,001; 48 h: F = 93.11; p < 0.001; 72 h F = 21.65; p < 0.001). The exposure to GenX produces several toxic effects on thyroid cells in vitro. GenX is able to promote DNA-damage and to affect the expression of thyroid transcription-factor genes. Capsule: GenX exposure of FRTL-5 at concentrations found in exposed workers reduced cell viability and proliferation, induced genotoxicity and altered gene expression.
AB - The hexafluoropropylene-oxide-dimer-acid (GenX) is a short-chain perfluoroalkyl substance that was recently introduced following the phase out of PFOA, as an alternative for the process of polymerization. GenX was detected at high concentrations in rivers, drinking water and in sera of exposed workers and recent findings suggested its potential dangerousness for human health. Aim of the study was to assess the consequences of GenX exposure on in vitro thyroid cells with particular attention to the effects on cell-viability, proliferation, DNA-damage and in the thyroid-related genes expression. FRTL-5 rat-thyroid cell line were incubated with increasing concentrations of GenX for 24 h, 48 h and 72 h to assess cell viability by WST-1. DNA-damage was assessed by comet assay and further confirmed by micronucleus assay. The proliferation of survived cells was measured by staining with crystal violet and evaluation of its optical density after incubation with SDS. Changes in TTF-1, Pax8, Tg, TSH-R, NIS and TPO genes expression were evaluated by RT-PCR. GenX exposure reduced FRTL-5 viability in a time and dose-dependent manner (24 h: ANOVA F = 22.286; p < 0.001; 48 h: F = 43.253, p < 0.001; 72 h: F = 49.708, p < 0.001). Moreover, GenX exerted a genotoxic effect, as assessed by comet assay (significant increase in tail-length, olive-tail-moment and percentage of tail-DNA) and micronucleus assay, both at cytotoxic and non-cytotoxic concentrations. Exposure to GenX at concentrations non-cytotoxic exerted a significant lowering of the expression of the regulatory gene TTF-1 (p < 0.05 versus untreated) and higher expression of Pax-8 (p < 0.05 versus untreated) and a down-regulation of NIS (p < 0.05 versus untreated). In addition, cells survived to GenX exposure showed a reduced re-proliferation ability (24 h: ANOVA F = 11,941; p < 0,001; 48 h: F = 93.11; p < 0.001; 72 h F = 21.65; p < 0.001). The exposure to GenX produces several toxic effects on thyroid cells in vitro. GenX is able to promote DNA-damage and to affect the expression of thyroid transcription-factor genes. Capsule: GenX exposure of FRTL-5 at concentrations found in exposed workers reduced cell viability and proliferation, induced genotoxicity and altered gene expression.
UR - http://www.scopus.com/inward/record.url?scp=85084523667&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084523667&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2020.114778
DO - 10.1016/j.envpol.2020.114778
M3 - Article
C2 - 32417585
AN - SCOPUS:85084523667
VL - 264
JO - Environmental Pollution
JF - Environmental Pollution
SN - 0269-7491
M1 - 114778
ER -