Abstract
Original language | English |
---|---|
Pages (from-to) | 2594-2605 |
Number of pages | 12 |
Journal | Brain Imaging Behav. |
Volume | 14 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Early-onset Alzheimer’s disease
- Functional connectivity
- Late-onset Alzheimer’s disease
- Resting state fMRI
- adult
- Alzheimer disease
- Article
- brain atrophy
- cerebrospinal fluid
- clinical article
- controlled study
- default mode network
- executive function
- female
- frontoparietal network
- functional connectivity
- functional magnetic resonance imaging
- gray matter
- human
- limbic cortex
- male
- mild cognitive impairment
- onset age
- posterior cingulate
- priority journal
- prodromal symptom
- prospective study
- sensorimotor network
- supramarginal gyrus
- visual cortex
- visual network
Fingerprint Dive into the research topics of 'Age at onset reveals different functional connectivity abnormalities in prodromal Alzheimer’s disease: Brain Imaging and Behavior'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Age at onset reveals different functional connectivity abnormalities in prodromal Alzheimer’s disease : Brain Imaging and Behavior. / Pini, L.; Geroldi, C.; Galluzzi, S.; Baruzzi, R.; Bertocchi, M.; Chitò, E.; Orini, S.; Romano, M.; Cotelli, M.; Rosini, S.; Magnaldi, S.; Morassi, M.; Cobelli, M.; Bonvicini, Cristian; Archetti, S.; Zanetti, O.; Frisoni, G.B.; Pievani, M.
In: Brain Imaging Behav., Vol. 14, No. 6, 2020, p. 2594-2605.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Age at onset reveals different functional connectivity abnormalities in prodromal Alzheimer’s disease
T2 - Brain Imaging and Behavior
AU - Pini, L.
AU - Geroldi, C.
AU - Galluzzi, S.
AU - Baruzzi, R.
AU - Bertocchi, M.
AU - Chitò, E.
AU - Orini, S.
AU - Romano, M.
AU - Cotelli, M.
AU - Rosini, S.
AU - Magnaldi, S.
AU - Morassi, M.
AU - Cobelli, M.
AU - Bonvicini, Cristian
AU - Archetti, S.
AU - Zanetti, O.
AU - Frisoni, G.B.
AU - Pievani, M.
N1 - Cited By :1 Export Date: 11 February 2021 Correspondence Address: Pievani, M.; Laboratory Alzheimer’s Neuroimaging & Epidemiology, via Pilastroni 4, Italy; email: mpievani@fatebenefratelli.eu Manufacturers: General Electric Funding details: GR2011-02349787 Funding text 1: This work was supported by the Italian Ministry of Health (Giovani Ricercatori grant GR2011-02349787 and Ricerca Corrente). References: Adriaanse, S.M., Binnewijzend, M.A., Ossenkoppele, R., Tijms, B.M., van der Flier, W.M., Koene, T., Smits, L.L., Barkhof, F., Widespread disruption of functional brain organization in early-onset Alzheimer’s disease (2014) PLoS One, 9. , PID: 25080229, COI: 1:CAS:528:DC%2BC2cXhs1alt7%2FO; Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., Filippi, M., Resting state fMRI in Alzheimer’s disease: Beyond the default mode network (2012) Neurobiology of Aging, 33, pp. 1564-1578. , PID: 21813210; Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Phelps, C.H., The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimer's & Dementia, 7, pp. 270-279; Ashburner, J., A fast diffeomorphic image registration algorithm (2007) Neuroimage, 38, pp. 95-113. , PID: 17761438; Bell, A.J., Sejnowski, T., An information-maximization approach to blind separation and blind deconvolution (1995) Neural Computation, 7, pp. 1129-1159. , COI: 1:STN:280:DyaK28%2Fkt1eqtg%3D%3D, PID: 7584893; Brier, M.R., Thomas, J.B., Snyder, A.Z., Benzinger, T.L., Zhang, D., Raichle, M.E., Holtzman, D.M., Ances, B.M., Loss of intra- and inter-network resting state functional connections with Alzheimer’s disease progression (2012) The Journal of Neuroscience, 32, pp. 8890-8899. , COI: 1:CAS:528:DC%2BC38XpvFOnsbc%3D, PID: 22745490; Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., Sheline, Y.I., Mintun, M.A., Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory (2005) The Journal of Neuroscience, 25, pp. 7709-7717. , COI: 1:CAS:528:DC%2BD2MXpvVKgurg%3D, PID: 16120771; Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., A method for making group inferences from functional MRI data using independent component analysis (2011) Human Brain Mapping, 14, pp. 140-151; Cavedo, E., Pievani, M., Boccardi, M., Galluzzi, S., Bocchetta, M., Bonetti, M., Thompson, P.M., Frisoni, G.B., Medial temporal atrophy in early and late-onset Alzheimer’s disease (2014) Neurobiology of Aging, 35, pp. 2004-2012. , PID: 24721821; Cho, H., Choi, J.Y., Lee, S.H., Lee, J.H., Choi, Y.C., Ryu, Y.H., Lee, M.S., Lyoo, C.H., Excessive tau accumulation in the parieto-occipital cortex characterizes early onset Alzheimer’s disease (2017) Neurobiology of Aging, 53, pp. 103-111. , COI: 1:CAS:528:DC%2BC2sXjt1Khtbk%3D, PID: 28254589; Cho, H., Seo, S.W., Kim, J.H., Suh, M.K., Lee, J.H., Choe, Y.S., Lee, K.H., Na, D.L., Amyloid deposition in early onset versus late onset Alzheimer’s disease (2013) Journal of Alzheimer's Disease, 35, pp. 813-821. , PID: 23507771, COI: 1:CAS:528:DC%2BC3sXotFyntLs%3D; Dillen, K.N.H., Jacobs, H.I.L., Kukolja, J., von Reutern, B., Richter, N., Onur, Ö.A., Dronse, J., Fink, G.R., Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer’s disease (2016) Neurobiology of Aging, 44, pp. 114-126. , PID: 27318139; Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Scazufca, M., Global prevalence of dementia: A Delphi consensus study (2005) Lancet, 366, pp. 2112-2117. , PID: 16360788; Frisoni, G.B., Beltramello, A., Weiss, C., Geroldi, C., Bianchetti, A., Trabucchi, M., Linear measures of atrophy in mild Alzheimer disease (1996) American Journal of Neuroradiology, 17, pp. 913-923. , COI: 1:STN:280:DyaK28zhs1SmsA%3D%3D, PID: 8733967; Frisoni, G.B., Pievani, M., Testa, C., Sabattoli, F., Bresciani, L., Bonetti, M., Beltramello, A., Thompson, P.M., The topography of grey matter involvement in early and late onset Alzheimer’s disease (2007) Brain, 130, pp. 720-730. , PID: 17293358; Frisoni, G.B., Prestia, A., Zanetti, O., Galluzzi, S., Romano, M., Cotelli, M., Gennarelli, M., Geroldi, C., Markers of Alzheimer’s disease in a population attending a memory clinic (2009) Alzheimers Dement, 5, pp. 307-317. , PID: 19560101; Gour, N., Felician, O., Didic, M., Koric, L., Gueriot, C., Chanoine, V., Confort-Gouny, S., Ranjeva, J.P., Functional connectivity changes differ in early and late-onset Alzheimer’s disease (2014) Human Brain Mapping, 35, pp. 2978-2994. , PID: 24123475; Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M.F., Duff, E.P., Smith, S.M., Hand classification of fMRI ICA noise components (2017) Neuroimage, 154, pp. 188-205. , PID: 27989777; Grothe, M.J., Teipel, S.J., Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks (2016) Human Brain Mapping, 37, pp. 35-53. , PID: 26441321; Hafkemeijer, A., Altmann-Schneider, I., Oleksik, A.M., van de Wiel, L., Middelkoop, H.A., van Buchem, M.A., van der Grond, J., Rombouts, S.A., Increased functionalconnectivity and brain atrophy in elderly with subjective memory complaints (2013) Brain Connectivity, 3, pp. 353-362. , PID: 23627661; Jacobs, H.I., Radua, J., Lückmann, H.C., Sack, A.T., Meta-analysis of functional network alterations in Alzheimer's disease: Toward a network biomarker (2013) Neuroscience and Biobehavioral Reviews, 37, pp. 753-765. , PID: 23523750; Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z., Buckner, R.L., Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity (2008) Journal of Neurophysiology, 100, pp. 129-139. , PID: 18385483; Kalpouzos, G., Eustache, F., de la Sayette, V., Viader, F., Chételat, G., Desgranges, B., Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients (2005) Journal of Neurology, 252, pp. 548-558. , COI: 1:CAS:528:DC%2BD2MXls1anurY%3D, PID: 15726251; Kas, A., De Souza, L.C., Samri, D., Bartolomeo, P., Lacomblez, L., Kalafat, M., Migliaccio, R., Sarazin, M., Neural correlates of cognitive impairment in posterior cortical atrophy (2011) Brain, 134, pp. 1464-1478. , PID: 21478188; Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., Glahn, D.C., Fox, P.T., Behavioral interpretations of intrinsic connectivity networks (2011) Journal of Cognitive Neuroscience, 23, pp. 4022-4037. , PID: 21671731; Lehmann, M., Ghosh, P.M., Madison, C., Laforce, R., Jr., Corbetta-Rastelli, C., Weiner, M.W., Greicius, M.D., Rabinovici, G.D., Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease (2013) Brain, 136, pp. 844-858. , PID: 23358601; Lehmann, M., Madison, C., Ghosh, P.M., Miller, Z.A., Greicius, M.D., Kramer, J.H., Coppola, G., Rabinovici, G.D., Loss of functional connectivity is greater outside the default mode network in non-familial early-onset Alzheimer’s disease variants (2015) Neurobiology of Aging, 36, pp. 2678-2686. , PID: 26242705; Li, Y.O., Adali, T., Calhoun, V.D., Estimating the number of independent components for functional magnetic resonance imaging data (2007) Human Brain Mapping, 28, pp. 1251-1266. , PID: 17274023; Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., Herukka, S.K., Blennow, K., CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment (2009) JAMA, 302, pp. 385-393. , COI: 1:CAS:528:DC%2BD1MXptVCgu7Y%3D; McDonald, C.R., McEvoy, L.K., Gharapetian, L., Fennema-Notestine, C., Hagler, D.J., Jr., Holland, D., Koyama, A., Dale, A.M., Regional rates of neocortical atrophy fromnormal aging to early Alzheimer disease (2009) Neurology, 73, pp. 457-465. , COI: 1:STN:280:DC%2BD1MrkvVegsQ%3D%3D, PID: 19667321; Migliaccio, R., Gallea, C., Kas, A., Perlbarg, V., Samri, D., Trotta, L., Michon, A., Bartolomeo, P., Functional connectivity of ventral and dorsal visual streams in posterior cortical atrophy (2016) Journal of Alzheimer’s Disease, 51, pp. 1119-1130. , PID: 26923019; Millington, R.S., James-Galton, M., Maia Da Silva, M.N., Plant, G.T., Bridge, H., Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits (2017) Neuroimage Clinical, 14, pp. 242-249. , PID: 28180083; Möller, C., Vrenken, H., Jiskoot, L., Versteeg, A., Barkhof, F., Scheltens, P., van der Flier, W.M., Different patterns of gray matter atrophy in early and late onset Alzheimer’s disease (2013) Neurobiology of Aging, 34, pp. 2014-2022. , PID: 23561509; Moretti, D.V., Pievani, M., Pini, L., Guerra, U.P., Paghera, B., Frisoni, G.B., Cerebral PET glucose hypometabolism in subjects with mild cognitive impairment and higher EEG high-alpha/low-alpha frequency power ratio (2017) Neurobiology of Aging, 58, pp. 213-224. , COI: 1:CAS:528:DC%2BC2sXhtFCls7bK, PID: 28755648; Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara, R., Dickson, D.W., Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study (2011) Lancet Neurology, 10, pp. 785-796. , PID: 21802369; Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S., Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions (2013) Cognitive, Affective, & Behavioral Neuroscience, 12, pp. 241-268; Ossenkoppele, R., Cohn-Sheehy, B.I., La Joie, R., Vogel, J.W., Möller, C., Lehmann, M., van Berckel, B.N., Rabinovici, G.D., Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease (2015) Human Brain Mapping, 36, pp. 4421-4437. , PID: 26260856; Ossenkoppele, R., Schonhaut, D.R., Schöll, M., Lockhart, S.N., Ayakta, N., Baker, S.L., O'Neil, J.P., Rabinovici, G.D., Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease (2016) Brain, 139, pp. 1551-1567. , PID: 26962052; Ossenkoppele, R., Zwan, M.D., Tolboom, N., van Assema, D.M., Adriaanse, S.F., Kloet, R.W., Boellaard, R., van Berckel, B.N., Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement (2012) Brain, 135, pp. 1125-2115. , PID: 22556189; Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E., Zetterberg, H., Blennow, K., Hansson, O., Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity (2017) Nature Communications, 8, p. 1214. , PID: 29089479, COI: 1:CAS:528:DC%2BC1cXptV2qsrk%3D; Pievani, M., Filippini, N., Van Den Heuvel, M.P., Cappa, S.F., Frisoni, G.B., Brain connectivity in neurodegenerative diseases - from phenotype to proteinopathy (2014) Nature Reviews. Neurology, 10, pp. 620-633. , PID: 25287597; Pievani, M., Pini, L., Cappa, S.F., Frisoni, G.B., Brain networks stimulation in dementia: Insights from functional imaging (2016) Current Opinion in Neurology, 29, pp. 756-762. , PID: 27661207; Pievani, M., Pini, L., Ferrari, C., Pizzini, F.B., Boscolo Galazzo, I., Cobelli, C., Cotelli, M., Frisoni, G.B., Coordinate-based meta-analysis of the default mode andsalience network for target identification in non-invasive brain stimulation of Alzheimer’s disease and behavioral variant frontotemporal dementia networks (2017) Journal of Alzheimer's Disease, 57, pp. 825-843. , PID: 28304293; Pini, L., Manenti, R., Cotelli, M., Pizzini, F.B., Frisoni, G.B., Pievani, M., Non-invasive brain stimulation in dementia: A complex network story (2019) Neurodegenerative Diseases, 18, pp. 281-301; Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion (2012) Neuroimage, 59, pp. 2142-2154. , PID: 22019881; Rabinovici, G.D., Furst, A.J., Alkalay, A., Racine, C.A., O'Neil, J.P., Janabi, M., Baker, S.L., Jagust, W.J., Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden (2010) Brain, 133, pp. 512-528. , PID: 20080878; Ranganath, C., Ritchey, M., Two cortical systems for memory-guided behaviour (2012) Nature Reviews. Neuroscience, 13, pp. 713-726. , COI: 1:CAS:528:DC%2BC38XhtlKrs73J, PID: 22992647; Ritchey, M., Libby, L.A., Ranganath, C., Cortico-hippocampal systems involved in memory and cognition: The PMAT framework (2015) Progress in Brain Research, 219, pp. 45-64. , PID: 26072233; Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., Neurodegenerative diseases target large-scale human brain networks (2009) Neuron, 62, pp. 42-52. , COI: 1:CAS:528:DC%2BD1MXmvVaitbg%3D, PID: 2691647; Sestieri, C., Corbetta, M., Romani, G.L., Shulman, G.L., Episodic memory retrieval, parietal cortex, and the default mode network: Functional and topographicanalyses (2011) The Journal of Neuroscience, 31, pp. 4407-4420. , COI: 1:CAS:528:DC%2BC3MXktVKrtrY%3D, PID: 21430142; Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Beckmann, C.F., Correspondence of the brain’s functional architecture duringactivation and rest (2009) Proceedings of the National Academy of Sciences, 106, pp. 13040-13045. , COI: 1:CAS:528:DC%2BD1MXhtVKru7%2FJ; Smits, L.L., Pijnenburg, Y.A., Koedam, E.L., van der Vlies, A.E., Reuling, I.E., Koene, T., Teunissen, C.E., van der Flier, W.M., Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile (2012) Journal of Alzheimer's Disease, 30, pp. 101-108. , PID: 22366769; Sorg, C., Riedl, V., Muhlau, M., Calhoun, V.D., Eichele, T., Laer, L., Drzezga, A., Wohlschlager, A.M., Selective changes of resting-state networks inindividuals at risk for Alzheimer’ s disease (2007) Proceedings of the National Academy of Sciences, 104, pp. 18760-18765. , COI: 1:CAS:528:DC%2BD2sXhtl2ltL%2FF; van der Flier, W.M., Pijnenburg, Y.A., Fox, N.C., Scheltens, P., Early onset versus late-onset Alzheimer’s disease: The case of the missing APOE ε4 allele (2011) Lancet Neurology, 10, pp. 280-288. , PID: 21185234, COI: 1:CAS:528:DC%2BC3MXit1Wktro%3D; Warren, J.D., Rohrer, J.D., Schott, J.M., Fox, N.C., Hardy, J., Rossor, M.N., Molecular nexopathies: A new paradigm of neurodegenerative disease (2013) Trends in Neurosciences, 36, pp. 561-569. , COI: 1:CAS:528:DC%2BC3sXhtFCkurnL, PID: 23876425; Warren, J.D., Fletcher, P.D., Golden, H.L., The paradox of syndromic diversity in Alzheimer disease (2012) Nature Reviews. Neurology, 8, pp. 451-464. , COI: 1:CAS:528:DC%2BC38XhtFOiurvM, PID: 22801974; Zhang, H.Y., Wang, S.J., Liu, B., Ma, Z.L., Yang, M., Zhang, Z.J., Teng, G.J., Resting brain connectivity: Changes during the progress of Alzheimer disease (2010) Radiology, 256, pp. 598-606. , PID: 20656843
PY - 2020
Y1 - 2020
N2 - Age at symptom onset (AAO) underlies different Alzheimer’s disease (AD) clinical variants: late-onset AD (LOAD) is characterized by memory deficits, while early-onset AD (EOAD) presents predominantly with non-memory symptoms. The involvement of different neural networks may explain these distinct clinical phenotypes. In this study, we tested the hypothesis of an early and selective involvement of neural networks based on AAO in AD. Twenty memory clinic patients with prodromal AD (i.e., mild cognitive impairment with an AD-like cerebrospinal fluid profile) and 30 healthy controls underwent a cognitive evaluation and a resting state functional MRI exam. Independent component analysis was performed to assess functional connectivity (FC) in the following networks: default mode, frontoparietal, limbic, visual, and sensorimotor. Patients were stratified into late-onset (pLOAD) and early-onset (pEOAD) prodromal AD according to the AAO and controls were stratified into younger and older groups accordingly. Decreased FC within the default mode and the limbic networks was observed in pLOAD, while pEOAD showed lower FC in the frontoparietal and visual networks. The sensorimotor network did not show differences between groups. A significant association was found between memory and limbic network FC in pLOAD, and between executive functions and frontoparietal network FC in pEOAD, although the latter association did not survive multiple comparison correction. Our findings indicate that aberrant connectivity in memory networks is associated with pLOAD, while networks underlying executive and visuo-spatial functions are affected in pEOAD. These findings are in line with the hypothesis that the pathophysiological mechanisms underlying EOAD and LOAD are distinct. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
AB - Age at symptom onset (AAO) underlies different Alzheimer’s disease (AD) clinical variants: late-onset AD (LOAD) is characterized by memory deficits, while early-onset AD (EOAD) presents predominantly with non-memory symptoms. The involvement of different neural networks may explain these distinct clinical phenotypes. In this study, we tested the hypothesis of an early and selective involvement of neural networks based on AAO in AD. Twenty memory clinic patients with prodromal AD (i.e., mild cognitive impairment with an AD-like cerebrospinal fluid profile) and 30 healthy controls underwent a cognitive evaluation and a resting state functional MRI exam. Independent component analysis was performed to assess functional connectivity (FC) in the following networks: default mode, frontoparietal, limbic, visual, and sensorimotor. Patients were stratified into late-onset (pLOAD) and early-onset (pEOAD) prodromal AD according to the AAO and controls were stratified into younger and older groups accordingly. Decreased FC within the default mode and the limbic networks was observed in pLOAD, while pEOAD showed lower FC in the frontoparietal and visual networks. The sensorimotor network did not show differences between groups. A significant association was found between memory and limbic network FC in pLOAD, and between executive functions and frontoparietal network FC in pEOAD, although the latter association did not survive multiple comparison correction. Our findings indicate that aberrant connectivity in memory networks is associated with pLOAD, while networks underlying executive and visuo-spatial functions are affected in pEOAD. These findings are in line with the hypothesis that the pathophysiological mechanisms underlying EOAD and LOAD are distinct. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
KW - Early-onset Alzheimer’s disease
KW - Functional connectivity
KW - Late-onset Alzheimer’s disease
KW - Resting state fMRI
KW - adult
KW - Alzheimer disease
KW - Article
KW - brain atrophy
KW - cerebrospinal fluid
KW - clinical article
KW - controlled study
KW - default mode network
KW - executive function
KW - female
KW - frontoparietal network
KW - functional connectivity
KW - functional magnetic resonance imaging
KW - gray matter
KW - human
KW - limbic cortex
KW - male
KW - mild cognitive impairment
KW - onset age
KW - posterior cingulate
KW - priority journal
KW - prodromal symptom
KW - prospective study
KW - sensorimotor network
KW - supramarginal gyrus
KW - visual cortex
KW - visual network
U2 - 10.1007/s11682-019-00212-6
DO - 10.1007/s11682-019-00212-6
M3 - Article
VL - 14
SP - 2594
EP - 2605
JO - Brain Imaging Behav.
JF - Brain Imaging Behav.
SN - 1931-7557
IS - 6
ER -