Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease

Results from a 4-year Prospective Cohort Study

Alessandro Trebbastoni, Floriana Pichiorri, Fabrizia D'Antonio, Alessandra Campanelli, Emanuela Onesti, Marco Ceccanti, Carlo de Lena, Maurizio Inghilleri

Research output: Contribution to journalArticle

Abstract

INTRODUCTION: To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD).

MATERIALS AND METHODS: Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time.

RESULTS: Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51).

DISCUSSION: aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.

Original languageEnglish
Pages (from-to)253
JournalFrontiers in Aging Neuroscience
Volume7
DOIs
Publication statusPublished - Jan 12 2016

Fingerprint

Neuronal Plasticity
Transcranial Magnetic Stimulation
Alzheimer Disease
Cohort Studies
Prospective Studies
Motor Evoked Potentials
Neuropsychological Tests
Motor Cortex
Cognitive Dysfunction
Analysis of Variance
Healthy Volunteers
Demography

Keywords

  • Journal Article

Cite this

Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease : Results from a 4-year Prospective Cohort Study. / Trebbastoni, Alessandro; Pichiorri, Floriana; D'Antonio, Fabrizia; Campanelli, Alessandra; Onesti, Emanuela; Ceccanti, Marco; de Lena, Carlo; Inghilleri, Maurizio.

In: Frontiers in Aging Neuroscience, Vol. 7, 12.01.2016, p. 253.

Research output: Contribution to journalArticle

Trebbastoni, Alessandro ; Pichiorri, Floriana ; D'Antonio, Fabrizia ; Campanelli, Alessandra ; Onesti, Emanuela ; Ceccanti, Marco ; de Lena, Carlo ; Inghilleri, Maurizio. / Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease : Results from a 4-year Prospective Cohort Study. In: Frontiers in Aging Neuroscience. 2016 ; Vol. 7. pp. 253.
@article{8844a866222d496da60602b355b97bd8,
title = "Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease: Results from a 4-year Prospective Cohort Study",
abstract = "INTRODUCTION: To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD).MATERIALS AND METHODS: Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120{\%} of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time.RESULTS: Thirty-five aMCI subjects completed the study; 60{\%} of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51).DISCUSSION: aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.",
keywords = "Journal Article",
author = "Alessandro Trebbastoni and Floriana Pichiorri and Fabrizia D'Antonio and Alessandra Campanelli and Emanuela Onesti and Marco Ceccanti and {de Lena}, Carlo and Maurizio Inghilleri",
year = "2016",
month = "1",
day = "12",
doi = "10.3389/fnagi.2015.00253",
language = "English",
volume = "7",
pages = "253",
journal = "Frontiers in Aging Neuroscience",
issn = "1663-4365",
publisher = "Frontiers Research Foundation",

}

TY - JOUR

T1 - Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease

T2 - Results from a 4-year Prospective Cohort Study

AU - Trebbastoni, Alessandro

AU - Pichiorri, Floriana

AU - D'Antonio, Fabrizia

AU - Campanelli, Alessandra

AU - Onesti, Emanuela

AU - Ceccanti, Marco

AU - de Lena, Carlo

AU - Inghilleri, Maurizio

PY - 2016/1/12

Y1 - 2016/1/12

N2 - INTRODUCTION: To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD).MATERIALS AND METHODS: Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time.RESULTS: Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51).DISCUSSION: aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.

AB - INTRODUCTION: To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD).MATERIALS AND METHODS: Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time.RESULTS: Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51).DISCUSSION: aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.

KW - Journal Article

U2 - 10.3389/fnagi.2015.00253

DO - 10.3389/fnagi.2015.00253

M3 - Article

VL - 7

SP - 253

JO - Frontiers in Aging Neuroscience

JF - Frontiers in Aging Neuroscience

SN - 1663-4365

ER -