Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment

Simona Zanotti, Sara Gibertini, Marina Mora

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

To probe pro-fibrotic mechanisms in dystrophic muscle, we isolated primary fibroblasts from Duchenne muscular dystrophy (DMD) and control muscle biopsies and induced transdifferentiation in myofibroblasts by transforming growth factor β1 (TGF-β1) treatment. We compared proliferating activity, soluble collagen production, and transcript and protein levels of decorin, myostatin, TGF-β1, matrix metalloproteinase-1 (MMP-1; interstitial collagenase), MMP-2 (gelatinase), MMP-3 (stromelysin), MMP-7 (matrilysin), and the tissue inhibitors of metalloproteinases inhibitors (TIMPs) 1-4, in fibroblasts and myofibroblasts. Principal differences included a significantly greater proliferation rate and soluble collagen production, a significant upregulation of decorin, myostatin and MMP-7 transcripts and proteins, and a significant downregulation of MMP-1 and TIMP-3 transcripts (with MMP-1 protein being reduced as shown by enzyme-linked immunosorbent assay and TIMP-3 protein apparently being reduced on Western blot), in untreated DMD fibroblasts compared with controls. TGF-β1 transdifferentiation significantly lowered decorin and myostatin and significantly increased TGF-β1 transcript and protein, significantly increased MMP-1 and TIMP-3, and significantly lowered MMP-7 transcript and protein in DMD cells compared with pretreatment controls. The differences between DMD and control fibroblasts showed that DMD fibroblasts had a profibrotic phenotype, accentuated by TGF-β1 treatment. Dystrophin absence itself could exert a direct influence on the homeostasis of the extracellular matrix (ECM) by allowing leakage of cellular components to the extracellular space or by abnormal cellular uptake of extracellular growth factors, cytokines, or enzymes influencing muscle fibroblasts either directly by altering adhesion properties or indirectly by interactions with molecules released into the ECM by muscle or inflammatory cells. The transdifferentiation of muscle fibroblasts might serve as a simplified model of fibrosis for further elucidation of the mechanisms of muscle fibrosis and for testing possible anti-fibrotic agents.

Original languageEnglish
Pages (from-to)397-410
Number of pages14
JournalCell & Tissue Research
Volume339
Issue number2
DOIs
Publication statusPublished - Feb 2010

Fingerprint

Duchenne Muscular Dystrophy
Transforming Growth Factors
Matrix Metalloproteinases
Fibroblasts
Muscles
Tissue Inhibitor of Metalloproteinase-3
Myostatin
Decorin
Matrix Metalloproteinase 1
Proteins
Therapeutics
Myofibroblasts
Extracellular Matrix
Matrix Metalloproteinase 11
Fibrosis
Collagen
Matrix Metalloproteinase 7
Matrix Metalloproteinase 8
Gelatinases
Dystrophin

Keywords

  • Duchenne muscular dystrophy
  • Extracellular matrix
  • Fibroblast cultures
  • Fibrosis
  • Human
  • Myofibroblasts

ASJC Scopus subject areas

  • Cell Biology
  • Histology
  • Pathology and Forensic Medicine

Cite this

Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment. / Zanotti, Simona; Gibertini, Sara; Mora, Marina.

In: Cell & Tissue Research, Vol. 339, No. 2, 02.2010, p. 397-410.

Research output: Contribution to journalArticle

@article{52056ce0afe34e5abe9e6ffbf4e391ac,
title = "Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment",
abstract = "To probe pro-fibrotic mechanisms in dystrophic muscle, we isolated primary fibroblasts from Duchenne muscular dystrophy (DMD) and control muscle biopsies and induced transdifferentiation in myofibroblasts by transforming growth factor β1 (TGF-β1) treatment. We compared proliferating activity, soluble collagen production, and transcript and protein levels of decorin, myostatin, TGF-β1, matrix metalloproteinase-1 (MMP-1; interstitial collagenase), MMP-2 (gelatinase), MMP-3 (stromelysin), MMP-7 (matrilysin), and the tissue inhibitors of metalloproteinases inhibitors (TIMPs) 1-4, in fibroblasts and myofibroblasts. Principal differences included a significantly greater proliferation rate and soluble collagen production, a significant upregulation of decorin, myostatin and MMP-7 transcripts and proteins, and a significant downregulation of MMP-1 and TIMP-3 transcripts (with MMP-1 protein being reduced as shown by enzyme-linked immunosorbent assay and TIMP-3 protein apparently being reduced on Western blot), in untreated DMD fibroblasts compared with controls. TGF-β1 transdifferentiation significantly lowered decorin and myostatin and significantly increased TGF-β1 transcript and protein, significantly increased MMP-1 and TIMP-3, and significantly lowered MMP-7 transcript and protein in DMD cells compared with pretreatment controls. The differences between DMD and control fibroblasts showed that DMD fibroblasts had a profibrotic phenotype, accentuated by TGF-β1 treatment. Dystrophin absence itself could exert a direct influence on the homeostasis of the extracellular matrix (ECM) by allowing leakage of cellular components to the extracellular space or by abnormal cellular uptake of extracellular growth factors, cytokines, or enzymes influencing muscle fibroblasts either directly by altering adhesion properties or indirectly by interactions with molecules released into the ECM by muscle or inflammatory cells. The transdifferentiation of muscle fibroblasts might serve as a simplified model of fibrosis for further elucidation of the mechanisms of muscle fibrosis and for testing possible anti-fibrotic agents.",
keywords = "Duchenne muscular dystrophy, Extracellular matrix, Fibroblast cultures, Fibrosis, Human, Myofibroblasts",
author = "Simona Zanotti and Sara Gibertini and Marina Mora",
year = "2010",
month = "2",
doi = "10.1007/s00441-009-0889-4",
language = "English",
volume = "339",
pages = "397--410",
journal = "Cell and Tissue Research",
issn = "0302-766X",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment

AU - Zanotti, Simona

AU - Gibertini, Sara

AU - Mora, Marina

PY - 2010/2

Y1 - 2010/2

N2 - To probe pro-fibrotic mechanisms in dystrophic muscle, we isolated primary fibroblasts from Duchenne muscular dystrophy (DMD) and control muscle biopsies and induced transdifferentiation in myofibroblasts by transforming growth factor β1 (TGF-β1) treatment. We compared proliferating activity, soluble collagen production, and transcript and protein levels of decorin, myostatin, TGF-β1, matrix metalloproteinase-1 (MMP-1; interstitial collagenase), MMP-2 (gelatinase), MMP-3 (stromelysin), MMP-7 (matrilysin), and the tissue inhibitors of metalloproteinases inhibitors (TIMPs) 1-4, in fibroblasts and myofibroblasts. Principal differences included a significantly greater proliferation rate and soluble collagen production, a significant upregulation of decorin, myostatin and MMP-7 transcripts and proteins, and a significant downregulation of MMP-1 and TIMP-3 transcripts (with MMP-1 protein being reduced as shown by enzyme-linked immunosorbent assay and TIMP-3 protein apparently being reduced on Western blot), in untreated DMD fibroblasts compared with controls. TGF-β1 transdifferentiation significantly lowered decorin and myostatin and significantly increased TGF-β1 transcript and protein, significantly increased MMP-1 and TIMP-3, and significantly lowered MMP-7 transcript and protein in DMD cells compared with pretreatment controls. The differences between DMD and control fibroblasts showed that DMD fibroblasts had a profibrotic phenotype, accentuated by TGF-β1 treatment. Dystrophin absence itself could exert a direct influence on the homeostasis of the extracellular matrix (ECM) by allowing leakage of cellular components to the extracellular space or by abnormal cellular uptake of extracellular growth factors, cytokines, or enzymes influencing muscle fibroblasts either directly by altering adhesion properties or indirectly by interactions with molecules released into the ECM by muscle or inflammatory cells. The transdifferentiation of muscle fibroblasts might serve as a simplified model of fibrosis for further elucidation of the mechanisms of muscle fibrosis and for testing possible anti-fibrotic agents.

AB - To probe pro-fibrotic mechanisms in dystrophic muscle, we isolated primary fibroblasts from Duchenne muscular dystrophy (DMD) and control muscle biopsies and induced transdifferentiation in myofibroblasts by transforming growth factor β1 (TGF-β1) treatment. We compared proliferating activity, soluble collagen production, and transcript and protein levels of decorin, myostatin, TGF-β1, matrix metalloproteinase-1 (MMP-1; interstitial collagenase), MMP-2 (gelatinase), MMP-3 (stromelysin), MMP-7 (matrilysin), and the tissue inhibitors of metalloproteinases inhibitors (TIMPs) 1-4, in fibroblasts and myofibroblasts. Principal differences included a significantly greater proliferation rate and soluble collagen production, a significant upregulation of decorin, myostatin and MMP-7 transcripts and proteins, and a significant downregulation of MMP-1 and TIMP-3 transcripts (with MMP-1 protein being reduced as shown by enzyme-linked immunosorbent assay and TIMP-3 protein apparently being reduced on Western blot), in untreated DMD fibroblasts compared with controls. TGF-β1 transdifferentiation significantly lowered decorin and myostatin and significantly increased TGF-β1 transcript and protein, significantly increased MMP-1 and TIMP-3, and significantly lowered MMP-7 transcript and protein in DMD cells compared with pretreatment controls. The differences between DMD and control fibroblasts showed that DMD fibroblasts had a profibrotic phenotype, accentuated by TGF-β1 treatment. Dystrophin absence itself could exert a direct influence on the homeostasis of the extracellular matrix (ECM) by allowing leakage of cellular components to the extracellular space or by abnormal cellular uptake of extracellular growth factors, cytokines, or enzymes influencing muscle fibroblasts either directly by altering adhesion properties or indirectly by interactions with molecules released into the ECM by muscle or inflammatory cells. The transdifferentiation of muscle fibroblasts might serve as a simplified model of fibrosis for further elucidation of the mechanisms of muscle fibrosis and for testing possible anti-fibrotic agents.

KW - Duchenne muscular dystrophy

KW - Extracellular matrix

KW - Fibroblast cultures

KW - Fibrosis

KW - Human

KW - Myofibroblasts

UR - http://www.scopus.com/inward/record.url?scp=77949269532&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949269532&partnerID=8YFLogxK

U2 - 10.1007/s00441-009-0889-4

DO - 10.1007/s00441-009-0889-4

M3 - Article

C2 - 19902258

AN - SCOPUS:77949269532

VL - 339

SP - 397

EP - 410

JO - Cell and Tissue Research

JF - Cell and Tissue Research

SN - 0302-766X

IS - 2

ER -