Alternative splicing in adhesion- and motility-related genes in breast cancer

Rosanna Aversa, Anna Sorrentino, Roberta Esposito, Maria Rosaria Ambrosio, Angela Amato, Alberto Zambelli, Alfredo Ciccodicola, Luciana D’Apice, Valerio Costa

Research output: Contribution to journalArticlepeer-review


Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression.

Original languageEnglish
Article number121
JournalInternational Journal of Molecular Sciences
Issue number1
Publication statusPublished - Jan 16 2016


  • Alternative splicing
  • Breast cancer
  • Cell adhesion and motility
  • RNA-Sequencing

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Spectroscopy
  • Inorganic Chemistry
  • Catalysis
  • Molecular Biology
  • Computer Science Applications


Dive into the research topics of 'Alternative splicing in adhesion- and motility-related genes in breast cancer'. Together they form a unique fingerprint.

Cite this