Alternative splicing of human plasma cholesteryl ester transfer protein mRNA in Caco-2 cells and its modulation by oleic acid

Mariarita Dessí, Corradino Motti, Claudio Cortese, Elisa Leonardis, Claudio Giovannini, Giorgio Federici, Fiorella Piemonte

Research output: Contribution to journalArticlepeer-review

Abstract

Cholesteryl ester transfer protein (CETP) is a plasma protein involved in the reverse cholesterol transport and expressed in several human tissues and cell lines. We studied CETP expression in Caco-2 cell line, a model of the human enterocyte epithelium. By reverse-transcriptase polymerase chain reaction, we could demonstrate that in basal condition Caco-2 cells have a low rate of expression of active CETP mRNA. Furthermore, we found that even in this cell line CETP mRNA alternative splicing occurs with deletion of exon 9 sequence. Densitometric analysis of the in vitro amplified fragments showed that under basal conditions about 60% of reverse transcribed CETP cDNA corresponds to exon 9-deleted transcripts. After challenge with 50 μM sodium oleate, there is a ~ 2 fold increase in the transcription rate of the full-length CETP cDNA, as measured by competitive PCR, which is accompanied to an increased activity measured in the cell-conditioned medium. On the contrary, no significant change is seen in the amount of exon 9-deleted cDNA. Consequently, an inversion in the ratio of full-length and exon 9-deleted CETP cDNA is evident, suggesting that sodium oleate selectively enhances the expression of full-length CETP mRNA.

Original languageEnglish
Pages (from-to)107-112
Number of pages6
JournalMolecular and Cellular Biochemistry
Volume177
Issue number1-2
Publication statusPublished - 1997

Keywords

  • Alternative splicing
  • Caco-2
  • CETP
  • Cholesteryl ester
  • Gene expression
  • mRNA
  • Polymerase chain reaction

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Molecular Biology
  • Genetics
  • Cell Biology

Fingerprint

Dive into the research topics of 'Alternative splicing of human plasma cholesteryl ester transfer protein mRNA in Caco-2 cells and its modulation by oleic acid'. Together they form a unique fingerprint.

Cite this