Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls

Stefano Pianta, Marta Magatti, Elsa Vertua, Patrizia Bonassi Signoroni, Ivan Muradore, Anna Maria Nuzzo, Alessandro Rolfo, Antonietta Silini, Federico Quaglia, Tullia Todros, Ornella Parolini

Research output: Contribution to journalArticle

Abstract

Pre-eclampsia (PE) is one of the most severe syndromes in human pregnancy, and the underlying mechanisms of PE have yet to be determined. Pre-eclampsia is characterized by the alteration of the immune system's activation status, an increase in inflammatory Th1/Th17/APC cells, and a decrease in Th2/Treg subsets/cytokines. Moreover, inflammatory infiltrates have been detected in the amniotic membranes of pre-eclamptic placentae, and to this date limited data are available regarding the role of amniotic membrane cells in PE. Interestingly, we and others have previously shown that human amniotic mesenchymal stromal cells (hAMSC) possess anti-inflammatory properties towards almost all immune cells described to be altered in PE. In this study we investigated whether the immunomodulatory properties of hAMSC were altered in PE. We performed a comprehensive study of cell phenotype and investigated the in vitro immunomodulatory properties of hAMSC isolated from pre-eclamptic pregnancies (PE-hAMSC), comparing them to hAMSC from normal pregnancies (N-hAMSC). We demonstrate that PE-hAMSC inhibit CD4/CD8 T-cell proliferation, suppress Th1/Th2/Th17 polarization, induce Treg and block dendritic cells and M1 differentiation switching them to M2 cells. Notably, PE-hAMSC generated a more prominent induction of Treg and higher suppression of interferon-γ when compared to N-hAMSC, and this was associated with higher transforming growth factor-β1 secretion and PD-L2/PD-L1 expression in PE-hAMSC. In conclusion, for the first time we demonstrate that there is no intrinsic impairment of the immunomodulatory features of PE-hAMSC. Our results suggest that amniotic mesenchymal stromal cells do not contribute to the disease, but conversely, could participate in offsetting the inflammatory environment which characterizes PE.

Original languageEnglish
Pages (from-to)157-169
Number of pages13
JournalJournal of Cellular and Molecular Medicine
Volume20
Issue number1
DOIs
Publication statusPublished - Jan 1 2016

Keywords

  • Amniotic mesenchymal stromal cells
  • CTL
  • DC
  • Immunomodulation
  • Macrophage
  • Phenotype
  • Placenta
  • Pre-eclampsia
  • T reg
  • Th

ASJC Scopus subject areas

  • Cell Biology
  • Molecular Medicine

Fingerprint Dive into the research topics of 'Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls'. Together they form a unique fingerprint.

  • Cite this

    Pianta, S., Magatti, M., Vertua, E., Bonassi Signoroni, P., Muradore, I., Nuzzo, A. M., Rolfo, A., Silini, A., Quaglia, F., Todros, T., & Parolini, O. (2016). Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls. Journal of Cellular and Molecular Medicine, 20(1), 157-169. https://doi.org/10.1111/jcmm.12715