AmphiD1/β, a dopamine D1/β-adrenergic receptor from the amphioxus Branchiostoma floridae: Evolutionary aspects of the catecholaminergic system during development

Simona Candiani, Diana Oliveri, Manuela Parodi, Patrizio Castagnola, Mario Pestarino

Research output: Contribution to journalArticlepeer-review

Abstract

Catecholamine receptors mediate wide-ranging functions in vertebrates and invertebrates but are largely unknown in invertebrate chordates such as amphioxus. Catecholaminergic cells have been described in amphioxus adults, but few data are known about the transmembrane signal transduction pathways and the expression pattern of related receptors during development. In Branchiostoma floridae, we cloned a full-length cDNA (AmphiD1/β) that corresponds to the dopamine D1/β receptor previously cloned from a related species of amphioxus, Branchiostoma lanceolatum, but no expression studies have been performed for such receptor in amphioxus. In B. floridae, AmphiD1/β encodes a polypeptide with typical G-protein-coupled receptor features, characterized by highest sequence similarity with D1 dopamine and β-adrenergic receptors. The expression of AmphiD1/β mRNA in different regions of the cerebral vesicle corresponds to that of D1-like receptors in vertebrate homologous structures. Furthermore, in situ experiments show that during development, the expression in the nervous system is restricted to cells located anteriorly. A further expression was found in larvae at the level of the endostyle, but it has no counterpart in the predominant expression domains of vertebrate dopamine and/or adrenergic receptor genes. At the same time, we compared the dopaminergic system, consisting of AmphiTH-expressing cells, with the AmphiD1/β expression. In conclusion, the identification of the AmphiD1/β receptor provides further basis for understanding the evolutionary history of the dopaminergic system at the transition from invertebrates and vertebrates.

Original languageEnglish
Pages (from-to)631-638
Number of pages8
JournalDevelopment Genes and Evolution
Volume215
Issue number12
DOIs
Publication statusPublished - Dec 2005

Keywords

  • Branchiostoma floridae
  • Central nervous system
  • Developmental expression
  • Dopamine and adrenergic receptors
  • Tyrosine hydroxylase

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Cell Biology
  • Developmental Biology
  • Genetics

Fingerprint Dive into the research topics of 'AmphiD1/β, a dopamine D1/β-adrenergic receptor from the amphioxus Branchiostoma floridae: Evolutionary aspects of the catecholaminergic system during development'. Together they form a unique fingerprint.

Cite this