An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein

C. Stincardini, T. Massignan, S. Biggi, S.R. Elezgarai, V. Sangiovanni, I. Vanni, M. Pancher, V. Adami, J. Moreno, M. Stravalaci, G. Maietta, M. Gobbi, A. Negro, J.R. Requena, J. Castilla, R. Nonno, E. Biasini

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions. © 2017 Stincardini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Original languageEnglish
JournalPLoS One
Volume12
Issue number8
DOIs
Publication statusPublished - 2017

Fingerprint

chlorpromazine
Prions
prions
Chlorpromazine
Antipsychotic Agents
Prion Diseases
prion diseases
Dynamins
PrPSc proteins
Pharmacology
PrPC Proteins
membrane glycoproteins
Neurodegenerative diseases
Membranes
GTP Phosphohydrolases
Membrane Glycoproteins
guanosinetriphosphatase
protein aggregates
Licensure
recycling

Keywords

  • chlorpromazine
  • dynamin
  • guanosine triphosphatase
  • isoprotein
  • membrane protein
  • neuroleptic agent
  • prion protein
  • substance P
  • ligand
  • animal experiment
  • animal model
  • Article
  • cell membrane
  • cell surface
  • cytotoxicity
  • drug mechanism
  • drug targeting
  • enzyme activity
  • HEK293 cell line
  • human
  • immunohistochemistry
  • in vitro study
  • membrane vesicle
  • mouse
  • nonhuman
  • prion disease
  • protein aggregation
  • protein binding
  • protein function
  • protein localization
  • scrapie
  • Western blotting
  • antagonists and inhibitors
  • cell line
  • drug effects
  • genetics
  • metabolism
  • mutation
  • protein transport
  • Antipsychotic Agents
  • Cell Line
  • Chlorpromazine
  • Dynamins
  • Humans
  • Ligands
  • Mutation
  • Prion Proteins
  • Protein Transport

Cite this

Stincardini, C., Massignan, T., Biggi, S., Elezgarai, S. R., Sangiovanni, V., Vanni, I., ... Biasini, E. (2017). An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One, 12(8). https://doi.org/10.1371/journal.pone.0182589

An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. / Stincardini, C.; Massignan, T.; Biggi, S.; Elezgarai, S.R.; Sangiovanni, V.; Vanni, I.; Pancher, M.; Adami, V.; Moreno, J.; Stravalaci, M.; Maietta, G.; Gobbi, M.; Negro, A.; Requena, J.R.; Castilla, J.; Nonno, R.; Biasini, E.

In: PLoS One, Vol. 12, No. 8, 2017.

Research output: Contribution to journalArticle

Stincardini, C, Massignan, T, Biggi, S, Elezgarai, SR, Sangiovanni, V, Vanni, I, Pancher, M, Adami, V, Moreno, J, Stravalaci, M, Maietta, G, Gobbi, M, Negro, A, Requena, JR, Castilla, J, Nonno, R & Biasini, E 2017, 'An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein', PLoS One, vol. 12, no. 8. https://doi.org/10.1371/journal.pone.0182589
Stincardini, C. ; Massignan, T. ; Biggi, S. ; Elezgarai, S.R. ; Sangiovanni, V. ; Vanni, I. ; Pancher, M. ; Adami, V. ; Moreno, J. ; Stravalaci, M. ; Maietta, G. ; Gobbi, M. ; Negro, A. ; Requena, J.R. ; Castilla, J. ; Nonno, R. ; Biasini, E. / An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. In: PLoS One. 2017 ; Vol. 12, No. 8.
@article{9a6a5fc7e30648e89d6ca3b7d3a6fe9e,
title = "An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein",
abstract = "Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions. {\circledC} 2017 Stincardini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",
keywords = "chlorpromazine, dynamin, guanosine triphosphatase, isoprotein, membrane protein, neuroleptic agent, prion protein, substance P, ligand, animal experiment, animal model, Article, cell membrane, cell surface, cytotoxicity, drug mechanism, drug targeting, enzyme activity, HEK293 cell line, human, immunohistochemistry, in vitro study, membrane vesicle, mouse, nonhuman, prion disease, protein aggregation, protein binding, protein function, protein localization, scrapie, Western blotting, antagonists and inhibitors, cell line, drug effects, genetics, metabolism, mutation, protein transport, Antipsychotic Agents, Cell Line, Chlorpromazine, Dynamins, Humans, Ligands, Mutation, Prion Proteins, Protein Transport",
author = "C. Stincardini and T. Massignan and S. Biggi and S.R. Elezgarai and V. Sangiovanni and I. Vanni and M. Pancher and V. Adami and J. Moreno and M. Stravalaci and G. Maietta and M. Gobbi and A. Negro and J.R. Requena and J. Castilla and R. Nonno and E. Biasini",
note = "Export Date: 5 April 2018 CODEN: POLNC Correspondence Address: Biasini, E.; Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of TrentoItaly; email: biasinie@gmail.com Chemicals/CAS: chlorpromazine, 50-53-3, 69-09-0; dynamin; guanosine triphosphatase, 9059-32-9; substance P, 33507-63-0; Antipsychotic Agents; Chlorpromazine; Dynamins; Ligands; Prion Proteins Funding details: GR-2010-2312769 Funding details: TCP14009 Funding details: Fondazione Telethon Funding details: 4357 Funding text: The study was supported by a national grant from Spain to JC (AGL2015-65046-C2-1-R), a Young Investigator Award from the Italian Ministry of Health (http://www.salute.gov.it/portale/ temi/p2_6.jsp?lingua=italiano&id=4357&area= Ricerca{\%}20sanitaria&menu=finalizzata), and a grant from the CJD Foundation (https:// cjdfoundation.org/grant-recipients) to EB (GR-2010-2312769). SRE was supported by a grant from the E-Rare Joint Transnational Call (Chaprion; http://www.erare.eu/financed-projects/chaprion). EB is an Assistant Telethon Scientist at the Dulbecco Telethon Institute (TCP14009, Fondazione Telethon, Italy; http://www.telethon.it/ cosa-facciamo/il-metodo/gli-istituti/istituto-telethon-dulbecco). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Olivier Andreoletti for the scrapie inoculum (Dawson isolate), Roberto Chiesa for the mouse prion inocula (RML and 22L) and Vincent B?ringue for the Tg338 mice. References: Prusiner, S.B., (2004) Prion Biology and Diseases, , Second ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; Prusiner, S.B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383. , PMID: 9811807; Collinge, J., Clarke, A.R., A general model of prion strains and their pathogenicity (2007) Science, 318 (5852), pp. 930-936. , https://doi.org/10.1126/science.1138718, Epub 2007/11/10. PMID: 17991853; Sim, V.L., Caughey, B., Recent advances in prion chemotherapeutics (2009) Infect Disord Drug Targets, 9 (1), pp. 81-91. , PMID: 19200018; Sim, V.L., Prion disease: Chemotherapeutic strategies (2012) Infect Disord Drug Targets, 12 (2), pp. 144-160. , PMID: 22420513; Korth, C., May, B.C., Cohen, F.E., Prusiner, S.B., Acridine and phenothiazine derivatives as pharmacothera-peutics for prion disease (2001) Proc Natl Acad Sci USA, 98 (17), pp. 9836-9841. , https://doi.org/10.1073/pnas.161274798, PMID: 11504948; Barret, A., Tagliavini, F., Forloni, G., Bate, C., Salmona, M., Colombo, L., Evaluation of quinacrine treatment for prion diseases (2003) J Virol, 77 (15), pp. 8462-8469. , https://doi.org/10.1128/JVI.77.15.8462-8469.2003, Epub 2003/07/15. PMID: 12857915; Doh-Ura, K., Ishikawa, K., Murakami-Kubo, I., Sasaki, K., Mohri, S., Race, R., Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models (2004) J Virol, 78 (10), pp. 4999-5006. , https://doi.org/10.1128/JVI.78.10.4999-5006.2004, PMID: 15113880; Nakajima, M., Yamada, T., Kusuhara, T., Furukawa, H., Takahashi, M., Yamauchi, A., Results of quinacrine administration to patients with Creutzfeldt-Jakob disease (2004) Dement Geriatr Cogn Disord, 17 (3), pp. 158-163. , https://doi.org/10.1159/000076350, PMID: 14739538; Tsuboi, Y., Doh-Ura, K., Yamada, T., Continuous intraventricular infusion of pentosan polysulfate: Clinical trial against prion diseases (2009) Neuropathology, 29 (5), pp. 632-636. , https://doi.org/10.1111/j.1440-1789.2009.01058.x, PMID: 19788637; Dealler, S., Rainov, N.G., Pentosan polysulfate as a prophylactic and therapeutic agent against prion disease (2003) Idrugs, 6 (5), pp. 470-478. , PMID: 12789602; Caughey, B., Brown, K., Raymond, G.J., Katzenstein, G.E., Thresher, W., Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected (1994) J Virol, 68 (4), pp. 2135-2141. , Epub 1994/04/01. PMID: 7511169; Ladogana, A., Casaccia, P., Ingrosso, L., Cibati, M., Salvatore, M., Xi, Y.G., Sulphate polyanions prolong the incubation period of scrapie-infected hamsters (1992) J Gen Virol, 73, pp. 661-665. , https://doi.org/10.1099/0022-1317-73-3-661, PMID: 1372039; Haik, S., Marcon, G., Mallet, A., Tettamanti, M., Welaratne, A., Giaccone, G., Doxycycline in Creutzfeldt-Jakob disease: A phase 2, randomised, double-blind, placebo-controlled trial (2014) Lancet Neurol, 13 (2), pp. 150-158. , https://doi.org/10.1016/S1474-4422(13)70307-7, PMID: 24411709; Forloni, G., Iussich, S., Awan, T., Colombo, L., Angeretti, N., Girola, L., Tetracyclines affect prion infectivity (2002) Proc Natl Acad Sci U S A, 99 (16), pp. 10849-10854. , https://doi.org/10.1073/pnas.162195499, PMID: 12149459; Teruya, K., Doh-Ura, K., Insights from Therapeutic Studies for PrP Prion Disease (2017) Cold Spring Harbor Perspectives in Medicine, 7 (3). , https://doi.org/10.1101/cshperspect.a024430, PMID: 27836910; Polymenidou, M., Stoeck, K., Glatzel, M., Vey, M., Bellon, A., Aguzzi, A., Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease (2005) Lancet Neurol, 4 (12), pp. 805-814. , https://doi.org/10.1016/S1474-4422(05)70225-8, PMID: 16297838; Giles, K., Olson, S.H., Prusiner, S.B., Developing Therapeutics for PrP Prion Diseases (2017) Cold Spring Harbor Perspectives in Medicine, , https://doi.org/10.1101/cshperspect.a023747, PMID: 28096242; Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M., Weissmann, C., Darwinian evolution of prions in cell culture (2010) Science, 327 (5967), pp. 869-872. , https://doi.org/10.1126/science.1183218, PMID: 20044542; Brandner, S., Raeber, A., Sailer, A., Blattler, T., Fischer, M., Weissmann, C., Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system (1996) Proc Natl Acad Sci U S A, 93 (23), pp. 13148-13151. , PMID: 8917559; Mallucci, G., Dickinson, A., Linehan, J., Klohn, P.C., Brandner, S., Collinge, J., Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis (2003) Science, 302 (5646), pp. 871-874. , https://doi.org/10.1126/science.1090187, PMID: 14593181; Biasini, E., Harris, D.A., Targeting the cellular prion protein to treat neurodegeneration (2012) Future Medicinal Chemistry, 4 (13), pp. 1655-1658. , https://doi.org/10.4155/fmc.12.114, PMID: 22924502; Iraci, N., Stincardini, C., Barreca, M.L., Biasini, E., Decoding the Function of the N-Terminal Tail of the Cellular Prion Protein to Inspire Novel Therapeutic Avenues for Neurodegenerative Diseases (2014) Virus Res, , https://doi.org/10.1016/j.virusres.2014.10.015, PMID: 25456402; Elezgarai, S.R., Biasini, E., Common therapeutic strategies for prion and Alzheimer’s diseases (2016) Biol Chem, 397 (11), pp. 1115-1124. , https://doi.org/10.1515/hsz-2016-0190, PMID: 27279060; Massignan, T., Cimini, S., Stincardini, C., Cerovic, M., Vanni, I., Elezgarai, S.R., A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein (2016) Sci Rep, 6, p. 23180. , https://doi.org/10.1038/srep23180, PMID: 26976106; White, M.D., Farmer, M., Mirabile, I., Brandner, S., Collinge, J., Mallucci, G.R., Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease (2008) Proc Natl Acad Sci U S A, 105 (29), pp. 10238-10243. , https://doi.org/10.1073/pnas.0802759105, Epub 2008/07/18. PMID: 18632556; Shyng, S.L., Lehmann, S., Moulder, K.L., Harris, D.A., Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells (1995) J Biol Chem, 270 (50), pp. 30221-30229. , Epub 1995/12/15. PMID: 8530433; Shyng, S.-L., Lehmann, S., Moulder, K.L., Harris, D.A., Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells (1995) J Biol Chem, 270, pp. 30221-30229. , PMID: 8530433; Benito-Leon, J., Combined quinacrine and chlorpromazine therapy in fatal familial insomnia (2004) Clin Neuro-pharmacol, 27 (4), pp. 201-203. , PMID: 15319710; Baral, P.K., Swayampakula, M., Rout, M.K., Kav, N.N., Spyracopoulos, L., Aguzzi, A., Structural basis of prion inhibition by phenothiazine compounds (2014) Structure, 22 (2), pp. 291-303. , https://doi.org/10.1016/j.str.2013.11.009, PMID: 24373770; Saborio, G.P., Permanne, B., Soto, C., Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding (2001) Nature, 411 (6839), pp. 810-813. , https://doi.org/10.1038/35081095, PMID: 11459061; Saa, P., Castilla, J., Soto, C., Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification (2006) J Biol Chem, 281 (46), pp. 35245-35252. , https://doi.org/10.1074/jbc.M603964200, PMID: 16982620; Di Bari, M.A., Chianini, F., Vaccari, G., Esposito, E., Conte, M., Eaton, S.L., The bank vole (Myodes glareo-lus) as a sensitive bioassay for sheep scrapie (2008) J Gen Virol, 89, pp. 2975-2985. , https://doi.org/10.1099/vir.0.2008/005520-0, PMID: 19008382; Biasini, E., Turnbaugh, J.A., Massignan, T., Veglianese, P., Forloni, G., Bonetto, V., The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells (2012) Plos One, 7 (3), p. e33472. , https://doi.org/10.1371/journal.pone.0033472, PMID: 22428057; Biasini, E., Unterberger, U., Solomon, I.H., Massignan, T., Senatore, A., Bian, H., A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity (2013) J Neurosci, 33 (6), pp. 2408-2418. , https://doi.org/10.1523/JNEUROSCI.3406-12.2013, PMID: 23392670; Solomon, I.H., Biasini, E., Harris, D.A., Ion channels induced by the prion protein: Mediators of neurotoxicity (2012) Prion, 6 (1), pp. 40-45. , https://doi.org/10.4161/pri.6.1.18627, PMID: 22453177; Massignan, T., Biasini, E., Harris, D.A., A Drug-Based Cellular Assay (DBCA) for studying cytotoxic and cytoprotective activities of the prion protein: A practical guide (2011) Methods, 53 (3), pp. 214-219. , https://doi.org/10.1016/j.ymeth.2010.11.005, Epub 2010/ 12/01. PMID: 21115124; Massignan, T., Stewart, R.S., Biasini, E., Solomon, I.H., Bonetto, V., Chiesa, R., A novel, drug-based, cellular assay for the activity of neurotoxic mutants of the prion protein (2010) J Biol Chem, 285 (10), pp. 7752-7765. , https://doi.org/10.1074/jbc.M109.064949, Epub 2009/11/27. PMID: 19940127; Daniel, J.A., Chau, N., Abdel-Hamid, M.K., Hu, L., Von Kleist, L., Whiting, A., Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis (2015) Traffic, 16 (6), pp. 635-654. , https://doi.org/10.1111/tra.12272, PMID: 25693808; Hussain, K.M., Leong, K.L., Ng, M.M., Chu, J.J., The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71 (2011) J Biol Chem, 286 (1), pp. 309-321. , https://doi.org/10.1074/jbc.M110.168468, PMID: 20956521; Harris, D.A., Trafficking, turnover and membrane topology of PrP (2003) Br Med Bull, 66, pp. 71-85. , PMID: 14522850; Sarnataro, D., Caputo, A., Casanova, P., Puri, C., Paladino, S., Tivodar, S.S., Lipid rafts and clathrin cooperate in the internalization of PrP in epithelial FRT cells (2009) Plos One, 4 (6), p. e5829. , https://doi.org/10.1371/journal.pone.0005829, PMID: 19503793; Shyng, S.L., Heuser, J.E., Harris, D.A., A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits (1994) J Cell Biol, 125 (6), pp. 1239-1250. , PMID: 7911471; Biasini, E., Tapella, L., Restelli, E., Pozzoli, M., Massignan, T., Chiesa, R., The hydrophobic core region governs mutant prion protein aggregation and intracellular retention (2010) Biochem J, 430 (3), pp. 477-486. , https://doi.org/10.1042/BJ20100615, Epub 2010/07/16. PMID: 20626348; Roikhel, V.M., Fokina, G.I., Pogodina, V.V., Influence of aminasine on experimental scrapie in mice (1984) Acta Virol, 28 (4), pp. 321-324. , PMID: 6148857; Kapur, S., Mizrahi, R., Li, M., From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis (2005) Schizophr Res, 79 (1), pp. 59-68. , https://doi.org/10.1016/j.schres.2005.01.003, PMID: 16005191; Ivanov, A.I., Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? (2008) Methods in Molecular Biology, 440, pp. 15-33. , https://doi.org/10.1007/978-1-59745-178-9_2, Clifton, NJ. PMID: 18369934; Subtil, A., Hemar, A., Dautry-Varsat, A., Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited (1994) J Cell Sci, 107, pp. 3461-3468. , PMID: 7706397; Umasankar, P.K., Sanker, S., Thieman, J.R., Chakraborty, S., Wendland, B., Tsang, M., Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning (2012) Nat Cell Biol, 14 (5), pp. 488-501. , https://doi.org/10.1038/ncb2473, PMID: 22484487; Wang, L.H., Rothberg, K.G., Anderson, R.G., Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation (1993) J Cell Biol, 123 (5), pp. 1107-1117. , PMID: 8245121; Yamasaki, T., Suzuki, A., Hasebe, R., Horiuchi, M., Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells (2014) Plos One, 9 (9), p. e106516. , https://doi.org/10.1371/journal.pone.0106516, PMID: 25181483; Solomon, I.H., Khatri, N., Biasini, E., Massignan, T., Huettner, J.E., Harris, D.A., An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity (2011) J Biol Chem, 286 (16), pp. 14724-14736. , https://doi.org/10.1074/jbc.M110.214973, Epub 2011/03/10. PMID: 21385869; Kang, Y.S., Zhao, X., Lovaas, J., Eisenberg, E., Greene, L.E., Clathrin-independent internalization of normal cellular prion protein in neuroblastoma cells is associated with the Arf6 pathway (2009) J Cell Sci, 122, pp. 4062-4069. , https://doi.org/10.1242/jcs.046292, PMID: 19843586; Mettlen, M., Pucadyil, T., Ramachandran, R., Schmid, S.L., Dissecting dynamin’s role in clathrin-mediated endocytosis (2009) Biochem Soc Trans, 37, pp. 1022-1026. , https://doi.org/10.1042/BST0371022, PMID: 19754444; Altmeppen, H.C., Puig, B., Dohler, F., Thurm, D.K., Falker, C., Krasemann, S., Proteolytic processing of the prion protein in health and disease (2012) American Journal of Neurodegenerative Disease, 1 (1), pp. 15-31. , PMID: 23383379; Filesi, I., Cardinale, A., Mattei, S., Biocca, S., Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrP(Sc) formation (2007) J Neurochem, 101 (6), pp. 1516-1526. , https://doi.org/10.1111/j.1471-4159.2006.04439.x, PMID: 17542810; McNally, K.L., Ward, A.E., Priola, S.A., Cells expressing anchorless prion protein are resistant to scrapie infection (2009) J Virol, 83 (9), pp. 4469-4475. , https://doi.org/10.1128/JVI.02412-08, PMID: 19225008; Biasini, E., Tapella, L., Mantovani, S., Stravalaci, M., Gobbi, M., Harris, D.A., Immunopurification of pathological prion protein aggregates (2009) Plos One, 4 (11), p. e7816. , https://doi.org/10.1371/journal.pone.0007816, PMID: 19915706; Christensen, H.M., Dikranian, K., Li, A., Baysac, K.C., Walls, K.C., Olney, J.W., A highly toxic cellular prion protein induces a novel, nonapoptotic form of neuronal death (2010) Am J Pathol, 176 (6), pp. 2695-2706. , https://doi.org/10.2353/ajpath.2010.091007, Epub 2010/05/18. PMID: 20472884; Ivanova, L., Barmada, S., Kummer, T., Harris, D.A., Mutant prion proteins are partially retained in the endoplasmic reticulum (2001) J Biol Chem, 276 (45), pp. 42409-42421. , https://doi.org/10.1074/jbc.M106928200, PMID: 11527974; Tapella, L., Stravalaci, M., Bastone, A., Biasini, E., Gobbi, M., Chiesa, R., Epitope scanning indicates structural differences in brain-derived monomeric and aggregated mutant prion proteins related to genetic prion diseases (2013) Biochem J, 454 (3), pp. 417-425. , https://doi.org/10.1042/BJ20130563, PMID: 23808898",
year = "2017",
doi = "10.1371/journal.pone.0182589",
language = "English",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein

AU - Stincardini, C.

AU - Massignan, T.

AU - Biggi, S.

AU - Elezgarai, S.R.

AU - Sangiovanni, V.

AU - Vanni, I.

AU - Pancher, M.

AU - Adami, V.

AU - Moreno, J.

AU - Stravalaci, M.

AU - Maietta, G.

AU - Gobbi, M.

AU - Negro, A.

AU - Requena, J.R.

AU - Castilla, J.

AU - Nonno, R.

AU - Biasini, E.

N1 - Export Date: 5 April 2018 CODEN: POLNC Correspondence Address: Biasini, E.; Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of TrentoItaly; email: biasinie@gmail.com Chemicals/CAS: chlorpromazine, 50-53-3, 69-09-0; dynamin; guanosine triphosphatase, 9059-32-9; substance P, 33507-63-0; Antipsychotic Agents; Chlorpromazine; Dynamins; Ligands; Prion Proteins Funding details: GR-2010-2312769 Funding details: TCP14009 Funding details: Fondazione Telethon Funding details: 4357 Funding text: The study was supported by a national grant from Spain to JC (AGL2015-65046-C2-1-R), a Young Investigator Award from the Italian Ministry of Health (http://www.salute.gov.it/portale/ temi/p2_6.jsp?lingua=italiano&id=4357&area= Ricerca%20sanitaria&menu=finalizzata), and a grant from the CJD Foundation (https:// cjdfoundation.org/grant-recipients) to EB (GR-2010-2312769). SRE was supported by a grant from the E-Rare Joint Transnational Call (Chaprion; http://www.erare.eu/financed-projects/chaprion). EB is an Assistant Telethon Scientist at the Dulbecco Telethon Institute (TCP14009, Fondazione Telethon, Italy; http://www.telethon.it/ cosa-facciamo/il-metodo/gli-istituti/istituto-telethon-dulbecco). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Olivier Andreoletti for the scrapie inoculum (Dawson isolate), Roberto Chiesa for the mouse prion inocula (RML and 22L) and Vincent B?ringue for the Tg338 mice. References: Prusiner, S.B., (2004) Prion Biology and Diseases, , Second ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; Prusiner, S.B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383. , PMID: 9811807; Collinge, J., Clarke, A.R., A general model of prion strains and their pathogenicity (2007) Science, 318 (5852), pp. 930-936. , https://doi.org/10.1126/science.1138718, Epub 2007/11/10. PMID: 17991853; Sim, V.L., Caughey, B., Recent advances in prion chemotherapeutics (2009) Infect Disord Drug Targets, 9 (1), pp. 81-91. , PMID: 19200018; Sim, V.L., Prion disease: Chemotherapeutic strategies (2012) Infect Disord Drug Targets, 12 (2), pp. 144-160. , PMID: 22420513; Korth, C., May, B.C., Cohen, F.E., Prusiner, S.B., Acridine and phenothiazine derivatives as pharmacothera-peutics for prion disease (2001) Proc Natl Acad Sci USA, 98 (17), pp. 9836-9841. , https://doi.org/10.1073/pnas.161274798, PMID: 11504948; Barret, A., Tagliavini, F., Forloni, G., Bate, C., Salmona, M., Colombo, L., Evaluation of quinacrine treatment for prion diseases (2003) J Virol, 77 (15), pp. 8462-8469. , https://doi.org/10.1128/JVI.77.15.8462-8469.2003, Epub 2003/07/15. PMID: 12857915; Doh-Ura, K., Ishikawa, K., Murakami-Kubo, I., Sasaki, K., Mohri, S., Race, R., Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models (2004) J Virol, 78 (10), pp. 4999-5006. , https://doi.org/10.1128/JVI.78.10.4999-5006.2004, PMID: 15113880; Nakajima, M., Yamada, T., Kusuhara, T., Furukawa, H., Takahashi, M., Yamauchi, A., Results of quinacrine administration to patients with Creutzfeldt-Jakob disease (2004) Dement Geriatr Cogn Disord, 17 (3), pp. 158-163. , https://doi.org/10.1159/000076350, PMID: 14739538; Tsuboi, Y., Doh-Ura, K., Yamada, T., Continuous intraventricular infusion of pentosan polysulfate: Clinical trial against prion diseases (2009) Neuropathology, 29 (5), pp. 632-636. , https://doi.org/10.1111/j.1440-1789.2009.01058.x, PMID: 19788637; Dealler, S., Rainov, N.G., Pentosan polysulfate as a prophylactic and therapeutic agent against prion disease (2003) Idrugs, 6 (5), pp. 470-478. , PMID: 12789602; Caughey, B., Brown, K., Raymond, G.J., Katzenstein, G.E., Thresher, W., Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected (1994) J Virol, 68 (4), pp. 2135-2141. , Epub 1994/04/01. PMID: 7511169; Ladogana, A., Casaccia, P., Ingrosso, L., Cibati, M., Salvatore, M., Xi, Y.G., Sulphate polyanions prolong the incubation period of scrapie-infected hamsters (1992) J Gen Virol, 73, pp. 661-665. , https://doi.org/10.1099/0022-1317-73-3-661, PMID: 1372039; Haik, S., Marcon, G., Mallet, A., Tettamanti, M., Welaratne, A., Giaccone, G., Doxycycline in Creutzfeldt-Jakob disease: A phase 2, randomised, double-blind, placebo-controlled trial (2014) Lancet Neurol, 13 (2), pp. 150-158. , https://doi.org/10.1016/S1474-4422(13)70307-7, PMID: 24411709; Forloni, G., Iussich, S., Awan, T., Colombo, L., Angeretti, N., Girola, L., Tetracyclines affect prion infectivity (2002) Proc Natl Acad Sci U S A, 99 (16), pp. 10849-10854. , https://doi.org/10.1073/pnas.162195499, PMID: 12149459; Teruya, K., Doh-Ura, K., Insights from Therapeutic Studies for PrP Prion Disease (2017) Cold Spring Harbor Perspectives in Medicine, 7 (3). , https://doi.org/10.1101/cshperspect.a024430, PMID: 27836910; Polymenidou, M., Stoeck, K., Glatzel, M., Vey, M., Bellon, A., Aguzzi, A., Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease (2005) Lancet Neurol, 4 (12), pp. 805-814. , https://doi.org/10.1016/S1474-4422(05)70225-8, PMID: 16297838; Giles, K., Olson, S.H., Prusiner, S.B., Developing Therapeutics for PrP Prion Diseases (2017) Cold Spring Harbor Perspectives in Medicine, , https://doi.org/10.1101/cshperspect.a023747, PMID: 28096242; Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M., Weissmann, C., Darwinian evolution of prions in cell culture (2010) Science, 327 (5967), pp. 869-872. , https://doi.org/10.1126/science.1183218, PMID: 20044542; Brandner, S., Raeber, A., Sailer, A., Blattler, T., Fischer, M., Weissmann, C., Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system (1996) Proc Natl Acad Sci U S A, 93 (23), pp. 13148-13151. , PMID: 8917559; Mallucci, G., Dickinson, A., Linehan, J., Klohn, P.C., Brandner, S., Collinge, J., Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis (2003) Science, 302 (5646), pp. 871-874. , https://doi.org/10.1126/science.1090187, PMID: 14593181; Biasini, E., Harris, D.A., Targeting the cellular prion protein to treat neurodegeneration (2012) Future Medicinal Chemistry, 4 (13), pp. 1655-1658. , https://doi.org/10.4155/fmc.12.114, PMID: 22924502; Iraci, N., Stincardini, C., Barreca, M.L., Biasini, E., Decoding the Function of the N-Terminal Tail of the Cellular Prion Protein to Inspire Novel Therapeutic Avenues for Neurodegenerative Diseases (2014) Virus Res, , https://doi.org/10.1016/j.virusres.2014.10.015, PMID: 25456402; Elezgarai, S.R., Biasini, E., Common therapeutic strategies for prion and Alzheimer’s diseases (2016) Biol Chem, 397 (11), pp. 1115-1124. , https://doi.org/10.1515/hsz-2016-0190, PMID: 27279060; Massignan, T., Cimini, S., Stincardini, C., Cerovic, M., Vanni, I., Elezgarai, S.R., A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein (2016) Sci Rep, 6, p. 23180. , https://doi.org/10.1038/srep23180, PMID: 26976106; White, M.D., Farmer, M., Mirabile, I., Brandner, S., Collinge, J., Mallucci, G.R., Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease (2008) Proc Natl Acad Sci U S A, 105 (29), pp. 10238-10243. , https://doi.org/10.1073/pnas.0802759105, Epub 2008/07/18. PMID: 18632556; Shyng, S.L., Lehmann, S., Moulder, K.L., Harris, D.A., Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells (1995) J Biol Chem, 270 (50), pp. 30221-30229. , Epub 1995/12/15. PMID: 8530433; Shyng, S.-L., Lehmann, S., Moulder, K.L., Harris, D.A., Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells (1995) J Biol Chem, 270, pp. 30221-30229. , PMID: 8530433; Benito-Leon, J., Combined quinacrine and chlorpromazine therapy in fatal familial insomnia (2004) Clin Neuro-pharmacol, 27 (4), pp. 201-203. , PMID: 15319710; Baral, P.K., Swayampakula, M., Rout, M.K., Kav, N.N., Spyracopoulos, L., Aguzzi, A., Structural basis of prion inhibition by phenothiazine compounds (2014) Structure, 22 (2), pp. 291-303. , https://doi.org/10.1016/j.str.2013.11.009, PMID: 24373770; Saborio, G.P., Permanne, B., Soto, C., Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding (2001) Nature, 411 (6839), pp. 810-813. , https://doi.org/10.1038/35081095, PMID: 11459061; Saa, P., Castilla, J., Soto, C., Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification (2006) J Biol Chem, 281 (46), pp. 35245-35252. , https://doi.org/10.1074/jbc.M603964200, PMID: 16982620; Di Bari, M.A., Chianini, F., Vaccari, G., Esposito, E., Conte, M., Eaton, S.L., The bank vole (Myodes glareo-lus) as a sensitive bioassay for sheep scrapie (2008) J Gen Virol, 89, pp. 2975-2985. , https://doi.org/10.1099/vir.0.2008/005520-0, PMID: 19008382; Biasini, E., Turnbaugh, J.A., Massignan, T., Veglianese, P., Forloni, G., Bonetto, V., The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells (2012) Plos One, 7 (3), p. e33472. , https://doi.org/10.1371/journal.pone.0033472, PMID: 22428057; Biasini, E., Unterberger, U., Solomon, I.H., Massignan, T., Senatore, A., Bian, H., A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity (2013) J Neurosci, 33 (6), pp. 2408-2418. , https://doi.org/10.1523/JNEUROSCI.3406-12.2013, PMID: 23392670; Solomon, I.H., Biasini, E., Harris, D.A., Ion channels induced by the prion protein: Mediators of neurotoxicity (2012) Prion, 6 (1), pp. 40-45. , https://doi.org/10.4161/pri.6.1.18627, PMID: 22453177; Massignan, T., Biasini, E., Harris, D.A., A Drug-Based Cellular Assay (DBCA) for studying cytotoxic and cytoprotective activities of the prion protein: A practical guide (2011) Methods, 53 (3), pp. 214-219. , https://doi.org/10.1016/j.ymeth.2010.11.005, Epub 2010/ 12/01. PMID: 21115124; Massignan, T., Stewart, R.S., Biasini, E., Solomon, I.H., Bonetto, V., Chiesa, R., A novel, drug-based, cellular assay for the activity of neurotoxic mutants of the prion protein (2010) J Biol Chem, 285 (10), pp. 7752-7765. , https://doi.org/10.1074/jbc.M109.064949, Epub 2009/11/27. PMID: 19940127; Daniel, J.A., Chau, N., Abdel-Hamid, M.K., Hu, L., Von Kleist, L., Whiting, A., Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis (2015) Traffic, 16 (6), pp. 635-654. , https://doi.org/10.1111/tra.12272, PMID: 25693808; Hussain, K.M., Leong, K.L., Ng, M.M., Chu, J.J., The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71 (2011) J Biol Chem, 286 (1), pp. 309-321. , https://doi.org/10.1074/jbc.M110.168468, PMID: 20956521; Harris, D.A., Trafficking, turnover and membrane topology of PrP (2003) Br Med Bull, 66, pp. 71-85. , PMID: 14522850; Sarnataro, D., Caputo, A., Casanova, P., Puri, C., Paladino, S., Tivodar, S.S., Lipid rafts and clathrin cooperate in the internalization of PrP in epithelial FRT cells (2009) Plos One, 4 (6), p. e5829. , https://doi.org/10.1371/journal.pone.0005829, PMID: 19503793; Shyng, S.L., Heuser, J.E., Harris, D.A., A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits (1994) J Cell Biol, 125 (6), pp. 1239-1250. , PMID: 7911471; Biasini, E., Tapella, L., Restelli, E., Pozzoli, M., Massignan, T., Chiesa, R., The hydrophobic core region governs mutant prion protein aggregation and intracellular retention (2010) Biochem J, 430 (3), pp. 477-486. , https://doi.org/10.1042/BJ20100615, Epub 2010/07/16. PMID: 20626348; Roikhel, V.M., Fokina, G.I., Pogodina, V.V., Influence of aminasine on experimental scrapie in mice (1984) Acta Virol, 28 (4), pp. 321-324. , PMID: 6148857; Kapur, S., Mizrahi, R., Li, M., From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis (2005) Schizophr Res, 79 (1), pp. 59-68. , https://doi.org/10.1016/j.schres.2005.01.003, PMID: 16005191; Ivanov, A.I., Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? (2008) Methods in Molecular Biology, 440, pp. 15-33. , https://doi.org/10.1007/978-1-59745-178-9_2, Clifton, NJ. PMID: 18369934; Subtil, A., Hemar, A., Dautry-Varsat, A., Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited (1994) J Cell Sci, 107, pp. 3461-3468. , PMID: 7706397; Umasankar, P.K., Sanker, S., Thieman, J.R., Chakraborty, S., Wendland, B., Tsang, M., Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning (2012) Nat Cell Biol, 14 (5), pp. 488-501. , https://doi.org/10.1038/ncb2473, PMID: 22484487; Wang, L.H., Rothberg, K.G., Anderson, R.G., Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation (1993) J Cell Biol, 123 (5), pp. 1107-1117. , PMID: 8245121; Yamasaki, T., Suzuki, A., Hasebe, R., Horiuchi, M., Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells (2014) Plos One, 9 (9), p. e106516. , https://doi.org/10.1371/journal.pone.0106516, PMID: 25181483; Solomon, I.H., Khatri, N., Biasini, E., Massignan, T., Huettner, J.E., Harris, D.A., An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity (2011) J Biol Chem, 286 (16), pp. 14724-14736. , https://doi.org/10.1074/jbc.M110.214973, Epub 2011/03/10. PMID: 21385869; Kang, Y.S., Zhao, X., Lovaas, J., Eisenberg, E., Greene, L.E., Clathrin-independent internalization of normal cellular prion protein in neuroblastoma cells is associated with the Arf6 pathway (2009) J Cell Sci, 122, pp. 4062-4069. , https://doi.org/10.1242/jcs.046292, PMID: 19843586; Mettlen, M., Pucadyil, T., Ramachandran, R., Schmid, S.L., Dissecting dynamin’s role in clathrin-mediated endocytosis (2009) Biochem Soc Trans, 37, pp. 1022-1026. , https://doi.org/10.1042/BST0371022, PMID: 19754444; Altmeppen, H.C., Puig, B., Dohler, F., Thurm, D.K., Falker, C., Krasemann, S., Proteolytic processing of the prion protein in health and disease (2012) American Journal of Neurodegenerative Disease, 1 (1), pp. 15-31. , PMID: 23383379; Filesi, I., Cardinale, A., Mattei, S., Biocca, S., Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrP(Sc) formation (2007) J Neurochem, 101 (6), pp. 1516-1526. , https://doi.org/10.1111/j.1471-4159.2006.04439.x, PMID: 17542810; McNally, K.L., Ward, A.E., Priola, S.A., Cells expressing anchorless prion protein are resistant to scrapie infection (2009) J Virol, 83 (9), pp. 4469-4475. , https://doi.org/10.1128/JVI.02412-08, PMID: 19225008; Biasini, E., Tapella, L., Mantovani, S., Stravalaci, M., Gobbi, M., Harris, D.A., Immunopurification of pathological prion protein aggregates (2009) Plos One, 4 (11), p. e7816. , https://doi.org/10.1371/journal.pone.0007816, PMID: 19915706; Christensen, H.M., Dikranian, K., Li, A., Baysac, K.C., Walls, K.C., Olney, J.W., A highly toxic cellular prion protein induces a novel, nonapoptotic form of neuronal death (2010) Am J Pathol, 176 (6), pp. 2695-2706. , https://doi.org/10.2353/ajpath.2010.091007, Epub 2010/05/18. PMID: 20472884; Ivanova, L., Barmada, S., Kummer, T., Harris, D.A., Mutant prion proteins are partially retained in the endoplasmic reticulum (2001) J Biol Chem, 276 (45), pp. 42409-42421. , https://doi.org/10.1074/jbc.M106928200, PMID: 11527974; Tapella, L., Stravalaci, M., Bastone, A., Biasini, E., Gobbi, M., Chiesa, R., Epitope scanning indicates structural differences in brain-derived monomeric and aggregated mutant prion proteins related to genetic prion diseases (2013) Biochem J, 454 (3), pp. 417-425. , https://doi.org/10.1042/BJ20130563, PMID: 23808898

PY - 2017

Y1 - 2017

N2 - Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions. © 2017 Stincardini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

AB - Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions. © 2017 Stincardini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

KW - chlorpromazine

KW - dynamin

KW - guanosine triphosphatase

KW - isoprotein

KW - membrane protein

KW - neuroleptic agent

KW - prion protein

KW - substance P

KW - ligand

KW - animal experiment

KW - animal model

KW - Article

KW - cell membrane

KW - cell surface

KW - cytotoxicity

KW - drug mechanism

KW - drug targeting

KW - enzyme activity

KW - HEK293 cell line

KW - human

KW - immunohistochemistry

KW - in vitro study

KW - membrane vesicle

KW - mouse

KW - nonhuman

KW - prion disease

KW - protein aggregation

KW - protein binding

KW - protein function

KW - protein localization

KW - scrapie

KW - Western blotting

KW - antagonists and inhibitors

KW - cell line

KW - drug effects

KW - genetics

KW - metabolism

KW - mutation

KW - protein transport

KW - Antipsychotic Agents

KW - Cell Line

KW - Chlorpromazine

KW - Dynamins

KW - Humans

KW - Ligands

KW - Mutation

KW - Prion Proteins

KW - Protein Transport

U2 - 10.1371/journal.pone.0182589

DO - 10.1371/journal.pone.0182589

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

ER -