TY - JOUR
T1 - An antitumor cellular vaccine based on a mini-membrane IgE
AU - Nigro, Elisa A.
AU - Soprana, Elisa
AU - Brini, Anna T.
AU - Ambrosi, Alessandro
AU - Yenagi, Vijay A.
AU - Dombrowicz, David
AU - Siccardi, Antonio G.
AU - Vangelista, Luca
PY - 2012/1/1
Y1 - 2012/1/1
N2 - The IgE-mediated immune system activation can be redirected to combat tumors. Mouse and human IgE have been shown to provide a potent adjuvant effect in antitumor vaccination, with a crucial role played by FcεRI. This effect results from T cell-mediated adaptive immune response. Modified vaccinia virus Ankara (MVA) has been used to infect IgE-loaded tumor cells. These results led to a shift toward a highly safe protocol employing membrane IgE (mIgE), thus eliminating any possible anaphylacto-genicity caused by circulating IgE. Evidence that human mIgE and a truncated version lacking IgE Fabs (tmIgE) bind and activate FcεRI has been fundamental and forms the core of this report. Human tmIgE has been engineered into a recombinant MVA (rMVA-tmIgE), and the expression of tmIgE and its transport to the surface of rMVA-tmIgE-infected cells has been detected by Western blot and cytofluorimetry, respectively. FcεRI activation by tmIgE has been confirmed by the release of β-hexosaminidase in a cell-to-cell contact assay using human FcεRI-transfected RBL-SX38 cells. The rMVA-tmIgE antitumor vaccination strategy has been investigated in FcεRIα -/- human FcεRIa + mice, with results indicating a level of protection comparable to that obtained using soluble human IgE tumor cell loading. The rMVA-tmIgE vector represents a device that suits safe IgE-based antitumor vaccines, harboring the possibility to couple tmIgE with other gene insertions that might enhance the antitumor effect, thus bringing the field closer to the clinics.
AB - The IgE-mediated immune system activation can be redirected to combat tumors. Mouse and human IgE have been shown to provide a potent adjuvant effect in antitumor vaccination, with a crucial role played by FcεRI. This effect results from T cell-mediated adaptive immune response. Modified vaccinia virus Ankara (MVA) has been used to infect IgE-loaded tumor cells. These results led to a shift toward a highly safe protocol employing membrane IgE (mIgE), thus eliminating any possible anaphylacto-genicity caused by circulating IgE. Evidence that human mIgE and a truncated version lacking IgE Fabs (tmIgE) bind and activate FcεRI has been fundamental and forms the core of this report. Human tmIgE has been engineered into a recombinant MVA (rMVA-tmIgE), and the expression of tmIgE and its transport to the surface of rMVA-tmIgE-infected cells has been detected by Western blot and cytofluorimetry, respectively. FcεRI activation by tmIgE has been confirmed by the release of β-hexosaminidase in a cell-to-cell contact assay using human FcεRI-transfected RBL-SX38 cells. The rMVA-tmIgE antitumor vaccination strategy has been investigated in FcεRIα -/- human FcεRIa + mice, with results indicating a level of protection comparable to that obtained using soluble human IgE tumor cell loading. The rMVA-tmIgE vector represents a device that suits safe IgE-based antitumor vaccines, harboring the possibility to couple tmIgE with other gene insertions that might enhance the antitumor effect, thus bringing the field closer to the clinics.
UR - http://www.scopus.com/inward/record.url?scp=84855406139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855406139&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1101842
DO - 10.4049/jimmunol.1101842
M3 - Article
C2 - 22124126
AN - SCOPUS:84855406139
VL - 188
SP - 103
EP - 110
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 1
ER -