Anatomy driven optimization strategy for total marrow irradiation with a volumetric modulated arc therapy technique

Pietro Mancosu, Pierina Navarria, Luca Castagna, Antonella Roggio, Chiara Pellegrini, Giacomo Reggiori, Antonella Fogliata, Francesca Lobefalo, Simona Castiglioni, Filippo Alongi, Luca Cozzi, Armando Santoro, Marta Scorsetti

Research output: Contribution to journalArticlepeer-review


The purpose of this study was to evaluate the possibility of dose distribution optimization for total marrow irradiation (TMI) employing volumetric-modulated arc therapy (VMAT) with RapidArc (RA) technology setting isocenter's positions and jaw's apertures according to patient's anatomical features. Plans for five patients were generated with the RA engine (PROIII): eight arcs were distributed along four isocenters and simultaneously optimized with collimator set to 90°. Two models were investigated for geometrical settings of arcs: (1) in the "symmetric" model, isocenters were equispaced and field apertures were set the same for all arcs to uniformly cover the entire target length; (2) in the "anatomy driven" model, both field sizes and isocenter positions were optimized in order to minimize the target volume near the field edges (i.e., to maximize the freedom of motion of MLC leaves inside the field aperture (for example, avoiding arcs with ribs and iliac wings in the same BEV)). All body bones from the cranium to mid of the femurs were defined as PTV; the maximum length achieved in this study was 130 cm. Twelve (12) Gy in 2 Gy/fractions were prescribed in order to obtain the covering of 85% of the PTV by 100% of the prescribed dose. For all organs at risk (including brain, optical structures, oral and neck structures, lungs, heart, liver, kidneys, spleen, bowels, bladder, rectum, genitals), planning strategy aimed to maximize sparing according to ALARA principles, looking to reach a mean dose lower than 6 Gy (i.e., 50% of the prescribed dose). Mean MU/fraction resulted 3184 ± 354 and 2939 ± 264 for the two strategies, corresponding to a reduction of 7% (range-2% to 13%) for (1) and (2). Target homogeneity, defined as D 2%-D 98% was 18% better for (2). Mean dose to the healthy tissue, defined as body minus PTV, had 10% better reduction with (2). The isocenter's position and the jaw's apertures are significant parameters in the optimization of the TMI with RA technique, giving the medical physicist a crucial role in driving the optimization and thus obtaining the best plan. A clinical protocol started in our department in October 2010.

Original languageEnglish
Pages (from-to)138-147
Number of pages10
JournalJournal of Applied Clinical Medical Physics
Issue number1
Publication statusPublished - 2012


  • Planning optimization
  • RapidArc
  • Total marrow irradiation
  • Volumetric-modulated arc therapy (VMAT)

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Radiation
  • Instrumentation


Dive into the research topics of 'Anatomy driven optimization strategy for total marrow irradiation with a volumetric modulated arc therapy technique'. Together they form a unique fingerprint.

Cite this