Anatomy of the immune system: facts and problems.

C. E. Grossi, E. Ciccone, C. Tacchetti, G. Santoro, G. Anastasi

Research output: Contribution to journalArticle

Abstract

In the introductory section of this report, the anatomy of the immune system, from organs and tissues to molecules, will be reviewed briefly. Cell proliferation and differentiation in the central lymphoid organs (thymus and bone marrow) yield a repertoire of T- and B-cell clones that seed into peripheral lymphoid organs (spleen, lymph nodes and Mucosa-Associated Lymphoid Tissue, MALT), where humoral and cell-mediated antigen-specific immune responses occur. The stringent process of clonal selection in the central lymphoid organs implies deletion of inappropriate cells via apoptosis. In the peripheral lymphoid organs, the potential of unlimited activation and expansion of lymphocytes in response to antigens is primarily regulated by apoptosis and anergy. These events, on the one hand, are relevant to prevent autoimmunity and lymphoproliferative disorders; on the other hand, clonal deletion and anergy provide a detrimental escape to immune recognition of malignant cells. Two major inhibitory mechanisms of the immune response have emerged recently. One is linked to the existence of bona fide suppressor cells and cytokines; the other relies on the existence of inhibitory molecules expressed by T, B and NK cells, as well as by other leukocytes. In the studies herein reported, emphasis will be given to surface membrane molecules that down-regulate T-cell-mediated immune responses. These molecules control interactions between T cells and antigen presenting cells (APC's) or target (virus-infected or mutated) cells that have to be killed. Two sets of molecules exist that either upregulate (coactivation molecules) or down-regulate (inhibitory molecules) T-cell mediated responses. The latter aspect of the immune regulation, i.e. molecules that limit the expansion of T-cell clones following specific recognition of antigens will be considered in depth. Two inhibitory molecules, CD152 (CTLA-4) and CD85/LIR-1/ILT2 are expressed in all T cells, being largely confined within intracellular compartments of these lymphocytes when they are in a resting state, but ready to be shuttled to and from the plasma membrane when cells are activated following encounter with antigen. Membrane expression of the two inhibitory molecules is transient and is regulated by an internalization process directed to endosomal compartments and to receptor degradation and/or recycling. CTLA-4 and CD85/LIR-1/ILT2 play a pivotal role in T-cell homeostasis that follows any cell-mediated immune response; their localization and functional role will be thoroughly analyzed. In the last part of this study a major question will be faced, i.e. is the containment of the possibly unlimited expansion of the immune system due to a blockade of the cell cycle? Or, else, could be apoptosis the sole mechanism responsible? Experimental data in support of the latter contention will be provided.

Original languageEnglish
Pages (from-to)97-124
Number of pages28
JournalItalian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia
Volume105
Issue number4
Publication statusPublished - Oct 2000

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Anatomy of the immune system: facts and problems.'. Together they form a unique fingerprint.

  • Cite this