Antagonism by N-methyl levallorphan-methane sulphonate (SR 58002 C) of morphine-elicited acute and chronic central and peripheral effects

M. Sbacchi, M. Colombo, A. La Regina, P. Petrillo, A. Tavani

Research output: Contribution to journalArticle

Abstract

The peripheral activity of the quaternary narcotic antagonist N-methyl levallorphan-methane sulphonate (SR 58002 C) at opioid sites located in the periphery and in the central nervous system (CNS), was studied by different approaches in rats after subcutaneous injection (s.c.). Pretreatment with SR 58002 C 2, 8 or 32 mg/kg s.c. 10, 50 or 110 min before buprenorphine consistently reduced buprenorphine in vivo binding only in the small intestinal longitudinal muscle with attached myenteric plexus (MP), whereas naloxone (1 mg/ kg s.c.) 10 min before buprenorphine lowered buprenorphine binding in MP and brain (without cerebellum). Plasma levels were not altered by SR 58002 C or naloxone. The same doses of SR 58002 C injected 10, 50 or 110 min before morphine selectively antagonized the inhibition of transit of a charcoal meal along the small intestine (mainly a peripheral effect) induced by the agonist, but did not antagonize morphine-elicited analgesia in the hot-plate test (central effect). Naloxone (1 mg/kg s.c.) injected 10 min before morphine antagonized both agonist effects simultaneously. In morphine-dependent rats SR 58002 C (0.25, 1, 4 and 32 mg/kg s.c.) induced diarrhea, dose-dependently, in most animals within the first 30 min, while jumping, measured in the same rats, occurred in some animals, not dose-dependently, from 60 min on. Naloxone (1 mg/kg s.c.) induced both effects in most rats. These findings suggest that, although SR 58002 C probably penetrates the blood-brain barrier in some morphine-dependent rats, it discrimanates peripheral and CNS opioid effects.

Original languageEnglish
Pages (from-to)2079-2089
Number of pages11
JournalLife Sciences
Volume42
Issue number21
DOIs
Publication statusPublished - 1988

    Fingerprint

ASJC Scopus subject areas

  • Pharmacology

Cite this