Antibiofilm agents against mdr bacterial strains: Is bioactive glass bag-s53p4 also effective?

Monica Bortolin, Elena De Vecchi, Carlo L Romanò, Marco Toscano, Roberto Mattina, Lorenzo Drago

Research output: Contribution to journalArticlepeer-review

Abstract

Objectives: The treatment of bone and joint infections is challenging due to the presence of bacterial biofilm and the increasing emergence of multiresistant strains. BAG-S53P4 is a bone substitute that is characterized by osteoconductive and antimicrobial properties. The aim of this study was to assess the effectiveness of BAG-S53P4 against biofilm produced in vitro by multiresistant bacterial strains. Methods: Multiresistant Staphylococcus epidermidis, Acinetobacter baumannii and Klebsiella pneumoniae isolated from bone and joint infections were used in this study. Titanium discs covered by bacterial biofilm were incubated with BAG-S53P4 or inert glass as a control. The amount of biofilm on each titanium disc was evaluated after 48 h of incubation by means of confocal laser scanning microscopy. Results: Significantly lower total biomass volumes were observed for all strains after treatment with BAG-S53P4 when compared with controls. Moreover, the percentage of dead cells was significantly higher in treated samples than in controls for all the tested strains. Conclusions: BAG-S53P4 is able to reduce the biofilm produced by multiresistant S. epidermidis, A. baumannii and K. pneumoniae on titanium substrates in vitro, probably by interfering with cell viability. Owing to its osteoconductive, antibacterial and antibiofilm properties, the use of BAG-S53P4 may be a successful strategy for the treatment of bone and prosthetic joint infections.

Original languageEnglish
Pages (from-to)123-127
Number of pages5
JournalJournal of Antimicrobial Chemotherapy
Volume71
Issue number1
DOIs
Publication statusPublished - Jan 1 2016

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Antibiofilm agents against mdr bacterial strains: Is bioactive glass bag-s53p4 also effective?'. Together they form a unique fingerprint.

Cite this