TY - JOUR
T1 - Aortic neck evolution after endovascular repair with TriVascular Ovation stent graft
AU - De Donato, Gianmarco
AU - Setacci, Francesco
AU - Bresadola, Luciano
AU - Castelli, Patrizio
AU - Chiesa, Roberto
AU - Mangialardi, Nicola
AU - Nano, Giovanni
AU - Setacci, Carlo
AU - Ricci, Carmelo
AU - Gasparini, Daniele
AU - Piccoli, Gianluca
AU - Kahlberg, Andrea
AU - Stegher, Silvia
AU - Carrafiello, Gianpaolo
AU - Rivolta, Nicola
AU - Novali, Claudio
AU - Rivellini, Carlo
AU - Lenti, Massimo
AU - Isernia, Giacomo
AU - Ronkey, Sonia
AU - Giudice, Rocco
AU - Speziale, Francesco
AU - Sirignano, Pasqualino
AU - Marcucci, Giustino
AU - Accrocca, Federico
AU - Volpe, Pietro
AU - Talarico, Francesco
AU - La Barbera, Gaetano
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Objective Aortic neck dilation has been reported after endovascular aneurysm repair (EVAR) with self-expanding devices. With a core laboratory analysis of morphologic changes, this study evaluated midterm results of aortic neck evolution after EVAR by endograft with no chronic outward force. Methods This was a multicenter registry of all patients undergoing EVAR with the Ovation endograft (TriVascular, Santa Rosa, Calif). Inclusion criteria were at least 24 months of follow-up. Standard computed tomography (CT) scans were reviewed centrally using a dedicated software with multiplanar and volume reconstructions. Proximal aortic neck was segmented into zone A (suprarenal aorta/fixation area), zone B (infrarenal aorta, from lowest renal artery to the first polymer-filled ring), and zone C (infrarenal aorta, at level of the first polymer-filled ring/sealing zone). Images were analyzed for neck enlargement (≥2 mm), graft migration (≥3 mm), endoleak, barb detachment, neck bulging, and patency of the celiac trunk and superior mesenteric and renal arteries. Results Inclusion criteria were met in 161 patients (mean age, 75.2 years; 92% male). During a mean follow-up period of 32 months (range, 24-50), 17 patients died (no abdominal aortic aneurysm-related death). Primary clinical success at 2 years was 95.1% (defined as absence of aneurysm-related death, type I or type III endoleak, graft infection or thrombosis, aneurysm expansion >5 mm, aneurysm rupture, or conversion to open repair). Assisted primary clinical success was 100%. CT scan images at a minimum follow-up of 2 years were available in 89 cases. Patency of visceral arteries at the level of suprarenal fixation (zone A) was 100%. Neither graft migration nor barb detachment or neck bulging was observed. None of the patients had significant neck enlargement. The mean change in the diameter was 0.18 ± 0.22 mm at zone A, -0.32 ± 0.87 mm at zone B, and -0.06 ± 0.97 mm at zone C. Changes at zone B correlated significantly with changes at zone C (correlation coefficient, 0.183; P =.05), whereas no correlation was found with zone A (correlation coefficient, 0.000; P = 1.0). Conclusions No aortic neck dilation occurred in this series at CT scan after a minimum 24-month follow-up. This may suggest that aortic neck evolution is not associated with EVAR at midterm follow-up when an endograft with no chronic outward radial force is implanted.
AB - Objective Aortic neck dilation has been reported after endovascular aneurysm repair (EVAR) with self-expanding devices. With a core laboratory analysis of morphologic changes, this study evaluated midterm results of aortic neck evolution after EVAR by endograft with no chronic outward force. Methods This was a multicenter registry of all patients undergoing EVAR with the Ovation endograft (TriVascular, Santa Rosa, Calif). Inclusion criteria were at least 24 months of follow-up. Standard computed tomography (CT) scans were reviewed centrally using a dedicated software with multiplanar and volume reconstructions. Proximal aortic neck was segmented into zone A (suprarenal aorta/fixation area), zone B (infrarenal aorta, from lowest renal artery to the first polymer-filled ring), and zone C (infrarenal aorta, at level of the first polymer-filled ring/sealing zone). Images were analyzed for neck enlargement (≥2 mm), graft migration (≥3 mm), endoleak, barb detachment, neck bulging, and patency of the celiac trunk and superior mesenteric and renal arteries. Results Inclusion criteria were met in 161 patients (mean age, 75.2 years; 92% male). During a mean follow-up period of 32 months (range, 24-50), 17 patients died (no abdominal aortic aneurysm-related death). Primary clinical success at 2 years was 95.1% (defined as absence of aneurysm-related death, type I or type III endoleak, graft infection or thrombosis, aneurysm expansion >5 mm, aneurysm rupture, or conversion to open repair). Assisted primary clinical success was 100%. CT scan images at a minimum follow-up of 2 years were available in 89 cases. Patency of visceral arteries at the level of suprarenal fixation (zone A) was 100%. Neither graft migration nor barb detachment or neck bulging was observed. None of the patients had significant neck enlargement. The mean change in the diameter was 0.18 ± 0.22 mm at zone A, -0.32 ± 0.87 mm at zone B, and -0.06 ± 0.97 mm at zone C. Changes at zone B correlated significantly with changes at zone C (correlation coefficient, 0.183; P =.05), whereas no correlation was found with zone A (correlation coefficient, 0.000; P = 1.0). Conclusions No aortic neck dilation occurred in this series at CT scan after a minimum 24-month follow-up. This may suggest that aortic neck evolution is not associated with EVAR at midterm follow-up when an endograft with no chronic outward radial force is implanted.
UR - http://www.scopus.com/inward/record.url?scp=84955693773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955693773&partnerID=8YFLogxK
U2 - 10.1016/j.jvs.2015.07.099
DO - 10.1016/j.jvs.2015.07.099
M3 - Article
C2 - 26391461
AN - SCOPUS:84955693773
VL - 63
SP - 8
EP - 15
JO - Journal of Vascular Surgery
JF - Journal of Vascular Surgery
SN - 0741-5214
IS - 1
ER -