Abstract
Apoptosis is an evolutionarily conserved cell suicide process executed by cysteine proteases (caspases) and regulated by the opposing factions of the Bcl-2 protein family. Mammalian caspase-9 and its activator Apaf-1 were thought to be essential, because mice lacking either of them display neuronal hyperplasia and their lymphocytes and fibroblasts seem resistant to certain apoptotic stimuli. Because Apaf-1 requires cytochrome c to activate caspase-9, and Bcl-2 prevents mitochondrial cytochrome c release, Bcl-2 is widely believed to inhibit apoptosis by safe-guarding mitochondrial membrane integrity. Our results suggest a different, broader role, because Bcl-2 overexpression increased lymphocyte numbers in mice and inhibited many apoptotic stimuli, but the absence of Apaf-1 or caspase-9 did not. Caspase activity was still discernible in cells lacking Apaf-1 or caspase-9, and a potent caspase antagonist both inhibited apoptosis and retarded cytochrome c release. We conclude that Bcl-2 regulates a caspase activation programme independently of the cytochrome c/Apaf-1/caspase-9 'apoptosome', which seems to amplify rather than initiate the caspase cascade.
Original language | English |
---|---|
Pages (from-to) | 634-637 |
Number of pages | 4 |
Journal | Nature |
Volume | 419 |
Issue number | 6907 |
DOIs | |
Publication status | Published - Oct 10 2002 |
ASJC Scopus subject areas
- General