Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout

Penny E. Lovat, Helen Irving, Margherita Annicchiarico-Petruzzelli, Francesca Bernassola, Archie J. Malcolm, Andrew D J Pearson, Gerry Melino, Christopher P F Redfern

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy. Purpose: The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans- retinoic acid are dependent on their continued presence in the culture medium. Methods: SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodidestained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells. Results: Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9- cis-retinoic acid. This effect was specific to 9-cis-retinoic acid. Conclusions: Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann- like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-retinoic acid induces both differentiation and apoptosis in N-type SH SY 5Y neuroblastoma cells. However, apoptosis was dependent on removal of 9-cis-retinoic acid from the culture medium. Implications: Since both differentiation and apoptosis are involved in tumor regression, 9-cis-retinoic acid may be a more appropriate retinoid for clinical trials in neuroblastoma. The dependence of apoptosis on treatment and subsequent removal of 9-cis-retinoic acid implies that drug scheduling may be an important parameter affecting therapeutic efficacy.

Original languageEnglish
Pages (from-to)446-452
Number of pages7
JournalJournal of the National Cancer Institute
Volume89
Issue number6
Publication statusPublished - Mar 19 1997

Fingerprint

Neuroblastoma
Cell Differentiation
Apoptosis
Tretinoin
Retinoids
alitretinoin
Culture Media
DNA Nucleotidylexotransferase
Propidium
Pharmaceutical Preparations
Electron Scanning Microscopy
Cultured Cells
Flow Cytometry
Cell Death
Survival Rate
Clinical Trials

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Lovat, P. E., Irving, H., Annicchiarico-Petruzzelli, M., Bernassola, F., Malcolm, A. J., Pearson, A. D. J., ... Redfern, C. P. F. (1997). Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout. Journal of the National Cancer Institute, 89(6), 446-452.

Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout. / Lovat, Penny E.; Irving, Helen; Annicchiarico-Petruzzelli, Margherita; Bernassola, Francesca; Malcolm, Archie J.; Pearson, Andrew D J; Melino, Gerry; Redfern, Christopher P F.

In: Journal of the National Cancer Institute, Vol. 89, No. 6, 19.03.1997, p. 446-452.

Research output: Contribution to journalArticle

Lovat, Penny E. ; Irving, Helen ; Annicchiarico-Petruzzelli, Margherita ; Bernassola, Francesca ; Malcolm, Archie J. ; Pearson, Andrew D J ; Melino, Gerry ; Redfern, Christopher P F. / Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout. In: Journal of the National Cancer Institute. 1997 ; Vol. 89, No. 6. pp. 446-452.
@article{0c289d8737464d95b062ccbf52e50d05,
title = "Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout",
abstract = "The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy. Purpose: The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans- retinoic acid are dependent on their continued presence in the culture medium. Methods: SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodidestained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells. Results: Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9- cis-retinoic acid. This effect was specific to 9-cis-retinoic acid. Conclusions: Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann- like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-retinoic acid induces both differentiation and apoptosis in N-type SH SY 5Y neuroblastoma cells. However, apoptosis was dependent on removal of 9-cis-retinoic acid from the culture medium. Implications: Since both differentiation and apoptosis are involved in tumor regression, 9-cis-retinoic acid may be a more appropriate retinoid for clinical trials in neuroblastoma. The dependence of apoptosis on treatment and subsequent removal of 9-cis-retinoic acid implies that drug scheduling may be an important parameter affecting therapeutic efficacy.",
author = "Lovat, {Penny E.} and Helen Irving and Margherita Annicchiarico-Petruzzelli and Francesca Bernassola and Malcolm, {Archie J.} and Pearson, {Andrew D J} and Gerry Melino and Redfern, {Christopher P F}",
year = "1997",
month = "3",
day = "19",
language = "English",
volume = "89",
pages = "446--452",
journal = "Journal of the National Cancer Institute",
issn = "0027-8874",
publisher = "Oxford University Press",
number = "6",

}

TY - JOUR

T1 - Apoptosis of N-type neuroblastoma cells after differentiation with 9- cis-retinoic acid and subsequent washout

AU - Lovat, Penny E.

AU - Irving, Helen

AU - Annicchiarico-Petruzzelli, Margherita

AU - Bernassola, Francesca

AU - Malcolm, Archie J.

AU - Pearson, Andrew D J

AU - Melino, Gerry

AU - Redfern, Christopher P F

PY - 1997/3/19

Y1 - 1997/3/19

N2 - The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy. Purpose: The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans- retinoic acid are dependent on their continued presence in the culture medium. Methods: SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodidestained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells. Results: Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9- cis-retinoic acid. This effect was specific to 9-cis-retinoic acid. Conclusions: Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann- like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-retinoic acid induces both differentiation and apoptosis in N-type SH SY 5Y neuroblastoma cells. However, apoptosis was dependent on removal of 9-cis-retinoic acid from the culture medium. Implications: Since both differentiation and apoptosis are involved in tumor regression, 9-cis-retinoic acid may be a more appropriate retinoid for clinical trials in neuroblastoma. The dependence of apoptosis on treatment and subsequent removal of 9-cis-retinoic acid implies that drug scheduling may be an important parameter affecting therapeutic efficacy.

AB - The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy. Purpose: The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans- retinoic acid are dependent on their continued presence in the culture medium. Methods: SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodidestained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells. Results: Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9- cis-retinoic acid. This effect was specific to 9-cis-retinoic acid. Conclusions: Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann- like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-retinoic acid induces both differentiation and apoptosis in N-type SH SY 5Y neuroblastoma cells. However, apoptosis was dependent on removal of 9-cis-retinoic acid from the culture medium. Implications: Since both differentiation and apoptosis are involved in tumor regression, 9-cis-retinoic acid may be a more appropriate retinoid for clinical trials in neuroblastoma. The dependence of apoptosis on treatment and subsequent removal of 9-cis-retinoic acid implies that drug scheduling may be an important parameter affecting therapeutic efficacy.

UR - http://www.scopus.com/inward/record.url?scp=0030960744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030960744&partnerID=8YFLogxK

M3 - Article

C2 - 9091647

AN - SCOPUS:0030960744

VL - 89

SP - 446

EP - 452

JO - Journal of the National Cancer Institute

JF - Journal of the National Cancer Institute

SN - 0027-8874

IS - 6

ER -