Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension

Ernesto Paoletti, Luca De Nicola, Francis B. Gabbai, Paolo Chiodini, Maura Ravera, Laura Pieracci, Sonia Marre, Paolo Cassottana, Sergio Lucà, Simone Vettoretti, Silvio Borrelli, Giuseppe Conte, Roberto Minutolo

Research output: Contribution to journalArticlepeer-review

Abstract

Background and objectives Left ventricular hypertrophy (LVH) and abnormal left ventricular (LV) geometry predict adverse outcomes in the general and hypertensive populations, but findings in CKD are still inconclusive. Design, setting, participants, & measurements We enrolled 445 patients with hypertension and CKD stages 2–5 in two academic nephrology clinics in 1999–2003 who underwent both echocardiography and ambulatory BP monitoring. LVH (LV mass >100 g/m2 [women] and >131 g/m2 [men]) and relative wall thickness (RWT) were used to define LV geometry: no LVH and RWT≤0.45 (normal), no LVH and RWT>0.45 (remodeling), LVH and RWT≤0.45 (eccentric), and LVH and RWT>0.45 (concentric). We evaluated the prognostic role of LVH and LV geometry on cardiovascular (CV; composite of fatal and nonfatal events) and renal outcomes (composite of ESRD and all-cause death). Results Age was 64.1±13.8 years old; 19% had diabetes, and 22% had CV disease. eGFR was 39.9±20.2 ml/min per 1.73 m2. LVH was detected in 249 patients (56.0%); of these, 125 had concentric LVH, and 124 had eccentric pattern, whereas 71 patients had concentric remodeling. Age, women, anemia, and nocturnal hypertension were independently associated with both concentric and eccentric LVH, whereas diabetes and history of CV disease associated with eccentric LVH only, and CKD stages 4 and 5 associated with concentric LVH only. During follow-up (median, 5.9 years; range, 0.04–15.3), 188 renal deaths (112 ESRD) and 103 CV events (61 fatal) occurred. Using multivariable Cox analysis, concentric and eccentric LVH was associated with higher risk of CV outcomes (hazard ratio [HR], 2.59; 95% confidence interval [95% CI], 1.39 to 4.84 and HR, 2.79; 95% CI, 1.47 to 5.26, respectively). Similarly, greater risk of renal end point was detected in concentric (HR, 2.33; 95% CI, 1.44 to 3.80) and eccentric (HR, 2.30; 95% CI, 1.42 to 3.74) LVH. Sensitivity analysis using LVH and RWT separately showed that LVH but not RWT was associated with higher cardiorenal risk. Conclusions In patients with CKD, LVH is a strong predictor of the risk of poor CV and renal outcomes independent from LV geometry.

Original languageEnglish
Pages (from-to)271-279
Number of pages9
JournalClinical Journal of the American Society of Nephrology
Volume11
Issue number2
DOIs
Publication statusPublished - Feb 5 2016

Keywords

  • Blood pressure monitoring, ambulatory
  • Chronic kidney disease
  • Echocardiography
  • Female
  • Follow-up studies
  • Humans
  • Hypertension
  • Hypertrophy, left ventricular
  • Left ventricular geometry

ASJC Scopus subject areas

  • Epidemiology
  • Critical Care and Intensive Care Medicine
  • Nephrology
  • Transplantation

Fingerprint Dive into the research topics of 'Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension'. Together they form a unique fingerprint.

Cite this