TY - JOUR

T1 - Attributable fraction for multiple risk factors

T2 - Methods, interpretations, and examples

AU - Di Maso, Matteo

AU - Bravi, Francesca

AU - Polesel, Jerry

AU - Negri, Eva

AU - Decarli, Adriano

AU - Serraino, Diego

AU - La Vecchia, Carlo

AU - Ferraroni, Monica

PY - 2020/3

Y1 - 2020/3

N2 - The attributable fraction is the candidate tool to quantify individual shares of each risk factor on the disease burden in a population, expressing the proportion of cases ascribable to the risk factors. The original formula ignored the presence of other factors (i.e. multiple risk factors and/or confounders), and several adjusting methods for potential confounders have been proposed. However, crude and adjusted attributable fractions do not sum up to their joint attributable fraction (i.e. the number of cases attributable to all risk factors together) and their sum may exceed one. A different approach consists of partitioning the joint attributable fraction into exposure-specific shares leading to sequential and average attributable fractions. We provide an example using Italian case-control data on oral cavity cancer comparing crude, adjusted, sequential, and average attributable fractions for smoking and alcohol and provide an overview of the available software routines for their estimation. For each method, we give interpretation and discuss shortcomings. Crude and adjusted attributable fractions added up over than one, whereas sequential and average methods added up to the joint attributable fraction = 0.8112 (average attributable fractions for smoking and alcohol were 0.4894 and 0.3218, respectively). The attributable fraction is a well-known epidemiological measure that translates risk factors prevalence and disease occurrence in useful figures for a public health perspective. This work endorses their proper use and interpretation.

AB - The attributable fraction is the candidate tool to quantify individual shares of each risk factor on the disease burden in a population, expressing the proportion of cases ascribable to the risk factors. The original formula ignored the presence of other factors (i.e. multiple risk factors and/or confounders), and several adjusting methods for potential confounders have been proposed. However, crude and adjusted attributable fractions do not sum up to their joint attributable fraction (i.e. the number of cases attributable to all risk factors together) and their sum may exceed one. A different approach consists of partitioning the joint attributable fraction into exposure-specific shares leading to sequential and average attributable fractions. We provide an example using Italian case-control data on oral cavity cancer comparing crude, adjusted, sequential, and average attributable fractions for smoking and alcohol and provide an overview of the available software routines for their estimation. For each method, we give interpretation and discuss shortcomings. Crude and adjusted attributable fractions added up over than one, whereas sequential and average methods added up to the joint attributable fraction = 0.8112 (average attributable fractions for smoking and alcohol were 0.4894 and 0.3218, respectively). The attributable fraction is a well-known epidemiological measure that translates risk factors prevalence and disease occurrence in useful figures for a public health perspective. This work endorses their proper use and interpretation.

U2 - 10.1177/0962280219848471

DO - 10.1177/0962280219848471

M3 - Article

C2 - 31074326

VL - 29

SP - 854

EP - 865

JO - Statistical Methods in Medical Research

JF - Statistical Methods in Medical Research

SN - 0962-2802

IS - 3

ER -