TY - JOUR
T1 - Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells
AU - Todaro, Matilde
AU - Zerilli, Monica
AU - Ricci-Vitiani, Lucia
AU - Bini, Miriam
AU - Alea, Mileidys Perez
AU - Florena, Ada Maria
AU - Miceli, Laura
AU - Condorelli, Gerolama
AU - Bonventre, Sebastiano
AU - Di Gesù, Giuseppe
AU - De Maria, Ruggero
AU - Stassi, Giorgio
PY - 2006/2/1
Y1 - 2006/2/1
N2 - Although CD95 and its ligand are expressed in thyroid cancer, the tumor cell mass does not seem to be affected by such expression. We have recently shown that thyroid carcinomas produce interleukin (IL)-4 and IL-10, which promote resistance to chemotherapy through the up-regulation of Bcl-xL. Here, we show that freshly purified thyroid cancer cells were completely refractory to CD95-induced apoptosis despite the consistent expression of Fas-associated death domain and caspase-8. The analysis of potential molecules able to prevent caspase-8 activation in thyroid cancer cells revealed a remarkable up-regulation of cellular FLIPL (cFLIPL) and PED/PEA-15, two antiapoptotic proteins whose exogenous expression in normal thyrocytes inhibited the death-inducing signaling complex of CD95. Additionally, small interfering RNA FLIP and PED antisense sensitized thyroid cancer cells to CD95-mediated apoptosis. Exposure of normal thyrocytes to IL-4 and IL-10 potently up-regulated cFLIP and PED/PEA-15, suggesting that these cytokines are responsible for thyroid cancer cell resistance to CD95 stimulation. Moreover, treatment with neutralizing antibodies against IL-4 and IL-10 or exogenous expression of suppressor of cytokine signaling-1 of thyroid cancer cells resulted in cFLIP and PED/PEA-15 down-regulation and CD95 sensitization. More importantly, prolonged IL-4 and IL-10 neutralization induced cancer cell growth inhibition and apoptosis, which were prevented by blocking antibodies against CD95 ligand. Altogether, autocrine production of IL-4 and IL-10 neutralizes CD95-generated signals and allows survival and growth of thyroid cancer cells. Thus, IL-4 and IL-10 may represent key targets for the treatment of thyroid cancer.
AB - Although CD95 and its ligand are expressed in thyroid cancer, the tumor cell mass does not seem to be affected by such expression. We have recently shown that thyroid carcinomas produce interleukin (IL)-4 and IL-10, which promote resistance to chemotherapy through the up-regulation of Bcl-xL. Here, we show that freshly purified thyroid cancer cells were completely refractory to CD95-induced apoptosis despite the consistent expression of Fas-associated death domain and caspase-8. The analysis of potential molecules able to prevent caspase-8 activation in thyroid cancer cells revealed a remarkable up-regulation of cellular FLIPL (cFLIPL) and PED/PEA-15, two antiapoptotic proteins whose exogenous expression in normal thyrocytes inhibited the death-inducing signaling complex of CD95. Additionally, small interfering RNA FLIP and PED antisense sensitized thyroid cancer cells to CD95-mediated apoptosis. Exposure of normal thyrocytes to IL-4 and IL-10 potently up-regulated cFLIP and PED/PEA-15, suggesting that these cytokines are responsible for thyroid cancer cell resistance to CD95 stimulation. Moreover, treatment with neutralizing antibodies against IL-4 and IL-10 or exogenous expression of suppressor of cytokine signaling-1 of thyroid cancer cells resulted in cFLIP and PED/PEA-15 down-regulation and CD95 sensitization. More importantly, prolonged IL-4 and IL-10 neutralization induced cancer cell growth inhibition and apoptosis, which were prevented by blocking antibodies against CD95 ligand. Altogether, autocrine production of IL-4 and IL-10 neutralizes CD95-generated signals and allows survival and growth of thyroid cancer cells. Thus, IL-4 and IL-10 may represent key targets for the treatment of thyroid cancer.
UR - http://www.scopus.com/inward/record.url?scp=32944465821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32944465821&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-05-2514
DO - 10.1158/0008-5472.CAN-05-2514
M3 - Article
C2 - 16452205
AN - SCOPUS:32944465821
VL - 66
SP - 1491
EP - 1499
JO - Journal of Cancer Research
JF - Journal of Cancer Research
SN - 0008-5472
IS - 3
ER -