BDNF and LTP-/LTD-like plasticity of the primary motor cortex in Gilles de la Tourette syndrome

L Marsili, A Suppa, F Di Stasio, D Belvisi, N Upadhyay, I Berardelli, M Pasquini, S Petrucci, M Ginevrino, G Fabbrini, F Cardona, G Defazio, A Berardelli

Research output: Contribution to journalArticlepeer-review


Gilles de la Tourette syndrome (GTS) is characterized by motor and vocal tics and often associated with obsessive-compulsive disorder (OCD). Responses to intermittent/continuous theta-burst stimulation (iTBS/cTBS), which probe long-term potentiation (LTP)-/depression (LTD)-like plasticity in the primary motor cortex (M1), are reduced in GTS. ITBS-/cTBS-induced M1 plasticity can be affected by brain-derived neurotrophic factor (BDNF) polymorphism. We investigated whether the BDNF polymorphism influences iTBS-/cTBS-induced LTP-/LTD-like M1 plasticity in 50 GTS patients and in 50 age- and sex-matched healthy subjects. In GTS patients, motor and psychiatric (OCD) symptom severity was rated using the Yale Global Tic Severity Scale (YGTSS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). We compared M1 iTBS-/cTBS-induced plasticity in healthy subjects and in patients with GTS. We also compared responses to TBS according to BDNF polymorphism (Val/Val vs Met carriers) in patients and controls. Fourteen healthy subjects and 13 GTS patients were Met carriers. When considering the whole group of controls, as expected, iTBS increased whereas cTBS decreased MEPs. Differently, iTBS/cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS. When comparing responses to TBS according to BDNF polymorphism, in healthy subjects, Met carriers showed reduced MEP changes compared with Val/Val individuals. Conversely, in patients with GTS, responses to iTBS/cTBS were comparable in Val/Val individuals and Met carriers. YGTSS and Y-BOCS scores were comparable in Met carriers and in Val/Val subjects. We conclude that iTBS and cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS, and this was not affected by BDNF genotype.

Original languageEnglish
Pages (from-to)841-850
Number of pages10
JournalExperimental Brain Research
Issue number3
Publication statusPublished - Mar 2017


  • Adolescent
  • Adult
  • Aged
  • Brain-Derived Neurotrophic Factor
  • Case-Control Studies
  • Electromyography
  • Evoked Potentials, Motor
  • Female
  • Humans
  • Male
  • Middle Aged
  • Motor Cortex
  • Neuronal Plasticity
  • Polymorphism, Single Nucleotide
  • Psychiatric Status Rating Scales
  • Severity of Illness Index
  • Statistics, Nonparametric
  • Tourette Syndrome
  • Transcranial Magnetic Stimulation
  • Young Adult
  • Journal Article
  • Research Support, Non-U.S. Gov't


Dive into the research topics of 'BDNF and LTP-/LTD-like plasticity of the primary motor cortex in Gilles de la Tourette syndrome'. Together they form a unique fingerprint.

Cite this