Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting

EBMT Cell Therapy and Immunobiology Working Party

Research output: Contribution to journalArticlepeer-review

Abstract

HLA-haploidentical haematopoietic stem cell transplantation (haplo-HSCT) is increasingly offered to patients with high-risk acute leukaemia. Unfortunately, haplo-HSCT is followed by a delayed immunoreconstitution. The aim of this EBMT registry study was to explore the clinical impact of lymphocyte subset counts after haplo-HSCT. We considered 144 leukaemic patients transplanted in the period 2001-2012. Pre-transplantation clinical variables and differential immune-cell counts (CD3, CD4, CD8 T cells, NK and B cells) measured before day 100 were evaluated for their capacity to predict overall survival, relapse mortality or non-relapse mortality (NRM). Negative prognostic factors for overall survival were advanced disease state at transplantation, host age and CMV seropositivity. Higher CD3, CD4 and CD8 counts were associated with a better overall survival and a lower NRM. Strikingly, when tested in multivariable analysis, higher CD3 and CD8 counts were still significantly associated with a lower NRM. These results indicate that an accelerated T-cell reconstitution correlates with less transplantation mortality, likely due to the protective role of T cells against viral infections. This observation suggests that CD8+ T-cell counts should be investigated as surrogate biomarkers of outcome in prospective haplo-HSCT trials.

Original languageEnglish
Number of pages10
JournalBone Marrow Transplantation
DOIs
Publication statusE-pub ahead of print - Dec 7 2018

Fingerprint

Dive into the research topics of 'Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting'. Together they form a unique fingerprint.

Cite this