Biological activity of the G-quadruplex ligand RHPS4 (3, 11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration

Carlo Leonetti, Sarah Amodei, Carmen D'Angelo, Angela Rizzo, Barbara Benassi, Anna Antonelli, Raffaella Elli, Malcolm F G Stevens, Maurizio D'Incalci, Gabriella Zupi, Annamaria Biroccio

Research output: Contribution to journalArticle

Abstract

This study had two goals: 1) to evaluate the biological effect of the novel pentacyclic acridine 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl] acridinium methosulfate (RHPS4) on human melanoma lines possessing long telomeres, and 2) to elucidate the relationship between G-quadruplex-based telomerase inhibitor-induced cellular effects and telomere length/dysfunction. The cellular pharmacological effects of RHPS4 have been evaluated by treating melanoma lines with increasing concentrations of RHPS4. A dose-dependent inhibition of cell proliferation was observed in all the lines during short-term treatment. Flow cytometric analysis demonstrated that RHPS4 induced a dose-dependent accumulation of cells in the S-G2/M phase of cell cycle. The RHPS4-induced cell cycle alteration was irreversible even at low doses, and the cells died from apoptosis. At high RHPS4 concentration, apoptosis was accompanied by the induction of a senescence phenotype: large cell size, vacuolated cytoplasm, and β-galactosidase activity. The short-term biological activity of RHPS4 was not caused by telomere shortening, but it was associated with telomere dysfunction, in terms of presence of telomeric fusions, polynucleated cells, and typical images of telophase bridge. In conclusion, our results demonstrate that the G-quadruplex ligand RHPS4 can function in a telomere length-independent manner through its ability to cause telomere-capping alteration.

Original languageEnglish
Pages (from-to)1138-1146
Number of pages9
JournalMolecular Pharmacology
Volume66
Issue number5
DOIs
Publication statusPublished - Nov 2004

    Fingerprint

ASJC Scopus subject areas

  • Pharmacology

Cite this