Abstract
Physical frailty and sarcopenia (PF&S) recapitulates all the hallmarks of aging and has become a focus in geroscience. Factors spanning muscle-specific processes (e.g., mitochondrial dysfunction in skeletal myocytes) to systemic changes (e.g., inflammation and amino acid dysmetabolism) have been pinpointed as possible contributors to PF&S pathophysiology. However, the search for PF&S biomarkers allowing the early identification and tracking of the condition over time is ongoing. This is mainly due to the phenotypic heterogeneity of PF&S, its unclear pathophysiology, and the frequent superimposition of other age-related conditions. Hence, presently, the identification of PF&S relies upon clinical, functional, and imaging parameters. The adoption of multi-marker approaches (combined with multivariate modeling) has shown great potential for addressing the complexity of PF&S pathophysiology and identifying candidate biological markers. Well-designed longitudinal studies are necessary for the incorporation of reliable biomarkers into clinical practice and for unveiling novel targets that are amenable to interventions.
Original language | English |
---|---|
Article number | 5635 |
Journal | International Journal of Molecular Sciences |
Volume | 21 |
Issue number | 16 |
DOIs | |
Publication status | Published - Aug 6 2020 |
Keywords
- cytokines
- exosomes
- extracellular vesicles
- geroscience
- gut dysbiosis
- inflammation
- metabolomics
- mitochondrial dysfunction
- physical performance
- skeletal muscle
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry