TY - JOUR
T1 - BOLD fMRI integration into radiosurgery treatment planning of cerebral vascular malformations
AU - Stancanello, Joseph
AU - Cavedon, Carlo
AU - Francescon, Paolo
AU - Causin, Francesco
AU - Avanzo, Michele
AU - Colombo, Federico
AU - Cerveri, Pietro
AU - Ferrigno, Giancarlo
AU - Uggeri, Fulvio
PY - 2007
Y1 - 2007
N2 - Functional magnetic resonance imaging (fMRI) is used to distinguish areas of the brain responsible for different tasks and functions. It is possible, for example, by using fMRI images, to identify particular regions in the brain which can be considered as "functional organs at risk" (fOARs), i.e., regions which would cause significant patient morbidity if compromised. The aim of this study is to propose and validate a method to exploit functional information for the identification of fOARs in CyberKnife (Accuray, Inc., Sunnyvale, CA) radiosurgery treatment planning; in particular, given the high spatial accuracy offered by the CyberKnife system, local nonrigid registration is used to reach accurate image matching. Five patients affected by arteriovenous malformations (AVMs) and scheduled to undergo radiosurgery were scanned prior to treatment using computed tomography (CT), three-dimensional (3D) rotational angiography (3DRA), T2 weighted and blood oxygenation level dependent echo planar imaging MRI. Tasks were chosen on the basis of lesion location by considering those areas which could be potentially close to treatment targets. Functional data were superimposed on 3DRA and CT used for treatment planning. The procedure for the localization of fMRI areas was validated by direct cortical stimulation on 38 AVM and tumor patients undergoing conventional surgery. Treatment plans studied with and without considering fOARs were significantly different, in particular with respect to both maximum dose and dose volume histograms; consideration of the fOARs allowed quality indices of treatment plans to remain almost constant or to improve in four out of five cases compared to plans with no consideration of fOARs. In conclusion, the presented method provides an accurate tool for the integration of functional information into AVM radiosurgery, which might help to minimize undesirable side effects and to make radiosurgery less invasive.
AB - Functional magnetic resonance imaging (fMRI) is used to distinguish areas of the brain responsible for different tasks and functions. It is possible, for example, by using fMRI images, to identify particular regions in the brain which can be considered as "functional organs at risk" (fOARs), i.e., regions which would cause significant patient morbidity if compromised. The aim of this study is to propose and validate a method to exploit functional information for the identification of fOARs in CyberKnife (Accuray, Inc., Sunnyvale, CA) radiosurgery treatment planning; in particular, given the high spatial accuracy offered by the CyberKnife system, local nonrigid registration is used to reach accurate image matching. Five patients affected by arteriovenous malformations (AVMs) and scheduled to undergo radiosurgery were scanned prior to treatment using computed tomography (CT), three-dimensional (3D) rotational angiography (3DRA), T2 weighted and blood oxygenation level dependent echo planar imaging MRI. Tasks were chosen on the basis of lesion location by considering those areas which could be potentially close to treatment targets. Functional data were superimposed on 3DRA and CT used for treatment planning. The procedure for the localization of fMRI areas was validated by direct cortical stimulation on 38 AVM and tumor patients undergoing conventional surgery. Treatment plans studied with and without considering fOARs were significantly different, in particular with respect to both maximum dose and dose volume histograms; consideration of the fOARs allowed quality indices of treatment plans to remain almost constant or to improve in four out of five cases compared to plans with no consideration of fOARs. In conclusion, the presented method provides an accurate tool for the integration of functional information into AVM radiosurgery, which might help to minimize undesirable side effects and to make radiosurgery less invasive.
KW - AVM
KW - CyberKnife
KW - fMRI
KW - Functional organs at risk
UR - http://www.scopus.com/inward/record.url?scp=34147116644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34147116644&partnerID=8YFLogxK
U2 - 10.1118/1.2710326
DO - 10.1118/1.2710326
M3 - Article
C2 - 17500448
AN - SCOPUS:34147116644
VL - 34
SP - 1176
EP - 1184
JO - Medical Physics
JF - Medical Physics
SN - 0094-2405
IS - 4
ER -