TY - JOUR
T1 - Can air-conditioning systems contribute to the spread of SARS/MERS/COVID-19 infection? Insights from a rapid review of the literature
AU - Chirico, Francesco
AU - Sacco, Angelo
AU - Bragazzi, Nicola Luigi
AU - Magnavita, Nicola
N1 - Funding Information:
Supported by computer simulation
Funding Information:
Funding: This research received no external funding. N.L.B. is partly supported by the CIHR 2019 Novel Coronavirus (COVID-19) rapid research program. N.M. is partly supported by Università Cattolica del Sacro Cuore Funds D1/2020.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - The airborne transmission of SARS-CoV-2 is still debated. The aim of this rapid review is to evaluate the COVID-19 risk associated with the presence of air-conditioning systems. Original studies (both observational and experimental researches) written in English and with no limit on time, on the airborne transmission of SARS-CoV, MERS-CoV, and SARS-CoV-2 coronaviruses that were associated with outbreaks, were included. Searches were made on PubMed/MEDLINE, PubMed Central (PMC), Google Scholar databases, and medRxiv. A snowball strategy was adopted to extend the search. Fourteen studies reporting outbreaks of coronavirus infection associated with the air-conditioning systems were included. All studies were carried out in the Far East. In six out the seven studies on SARS, the role of Heating, Ventilation, and Air Conditioning (HVAC) in the outbreak was indirectly proven by the spatial and temporal pattern of cases, or by airflow-dynamics models. In one report on MERS, the contamination of HVAC by viral particles was demonstrated. In four out of the six studies on SARS-CoV-2, the diffusion of viral particles through HVAC was suspected or supported by computer simulation. In conclusion, there is sufficient evidence of the airborne transmission of coronaviruses in previous Asian outbreaks, and this has been taken into account in the guidelines released by organizations and international agencies for controlling the spread of SARS-CoV-2 in indoor environments. However, the technological differences in HVAC systems prevent the generalization of the results on a worldwide basis. The few COVID-19 investigations available do not provide sufficient evidence that the SARS-CoV-2 virus can be transmitted by HVAC systems.
AB - The airborne transmission of SARS-CoV-2 is still debated. The aim of this rapid review is to evaluate the COVID-19 risk associated with the presence of air-conditioning systems. Original studies (both observational and experimental researches) written in English and with no limit on time, on the airborne transmission of SARS-CoV, MERS-CoV, and SARS-CoV-2 coronaviruses that were associated with outbreaks, were included. Searches were made on PubMed/MEDLINE, PubMed Central (PMC), Google Scholar databases, and medRxiv. A snowball strategy was adopted to extend the search. Fourteen studies reporting outbreaks of coronavirus infection associated with the air-conditioning systems were included. All studies were carried out in the Far East. In six out the seven studies on SARS, the role of Heating, Ventilation, and Air Conditioning (HVAC) in the outbreak was indirectly proven by the spatial and temporal pattern of cases, or by airflow-dynamics models. In one report on MERS, the contamination of HVAC by viral particles was demonstrated. In four out of the six studies on SARS-CoV-2, the diffusion of viral particles through HVAC was suspected or supported by computer simulation. In conclusion, there is sufficient evidence of the airborne transmission of coronaviruses in previous Asian outbreaks, and this has been taken into account in the guidelines released by organizations and international agencies for controlling the spread of SARS-CoV-2 in indoor environments. However, the technological differences in HVAC systems prevent the generalization of the results on a worldwide basis. The few COVID-19 investigations available do not provide sufficient evidence that the SARS-CoV-2 virus can be transmitted by HVAC systems.
KW - Airborne transmission
KW - MERS-CoV
KW - Outbreak
KW - Prevention
KW - Safety
KW - SARS-CoV-1
KW - SARS-CoV-2
KW - Ventilation
KW - Workplace
UR - http://www.scopus.com/inward/record.url?scp=85089655886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089655886&partnerID=8YFLogxK
U2 - 10.3390/ijerph17176052
DO - 10.3390/ijerph17176052
M3 - Review article
C2 - 32825303
AN - SCOPUS:85089655886
VL - 17
SP - 1
EP - 11
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
SN - 1661-7827
IS - 17
M1 - 6052
ER -