Can strenuous exercise harm the heart? Insights from a study of cardiovascular neural regulation in amateur triathletes

Research output: Contribution to journalArticle

Abstract

Regular exercise is recommended to improve the cardiovascular risk profile. However, there is growing evidence that extreme volumes and intensity of long-term exertion may increase the risk of acute cardiac events. The aim of this study is to investigate the after-effects of regular, strenuous physical training on the cardiovascular neural regulation in a group of amateur triathletes compared to age-matched sedentary controls. We enrolled 11 non-elite triathletes (4 women, age 24±4 years), who had refrained from exercise for 72 hours, and 11 age-matched healthy non-athletes (3 women, age 25±2 years). Comprehensive echocardiographic and cardiopulmonary exercise tests were performed at baseline. Electrocardiogram, non-invasive blood pressure, respiratory activity, and muscle sympathetic nerve activity (MSNA) were continuously recorded in a supine position (REST) and during an incremental 15° step-wise head-up tilt test up to 75° (TILT). Blood samples were collected for determination of stress mediators. Autoregressive spectral analysis provided the indices of the cardiac sympathetic (LFRR) and vagal (HFRR) activity, the vascular sympathetic control (LFSAP), and the cardiac sympatho-vagal modulation (LF/HF). Compared to controls, triathletes were characterized by greater LFRR, LF/HF ratio, LFSAP, MSNA, and lower HFRR at REST and during TILT, i.e. greater overall cardiovascular sympathetic modulation together with lower cardiac vagal activity. Cortisol and adrenocorticotropic hormone concentrations were also higher in triathletes. In conclusion, triathletes were characterized by signs of sustained cardiovascular sympathetic overactivity. This might represent a risk factor for future cardiovascular events, given the known association between chronic excessive sympathetic activity and increased cardiovascular risk.

Original languageEnglish
Pages (from-to)e0216567
JournalPLoS One
Volume14
Issue number5
DOIs
Publication statusPublished - 2019

Fingerprint

exercise
heart
Exercise
Muscle
nerve tissue
Respiratory Muscles
Supine Position
Modulation
risk profile
Exercise Test
muscles
Adrenocorticotropic Hormone
exercise test
Blood Vessels
Hydrocortisone
electrocardiography
Blood pressure
Electrocardiography
corticotropin
Head

Cite this

@article{9d3f787494d94136a1d741f9452ad198,
title = "Can strenuous exercise harm the heart?: Insights from a study of cardiovascular neural regulation in amateur triathletes",
abstract = "Regular exercise is recommended to improve the cardiovascular risk profile. However, there is growing evidence that extreme volumes and intensity of long-term exertion may increase the risk of acute cardiac events. The aim of this study is to investigate the after-effects of regular, strenuous physical training on the cardiovascular neural regulation in a group of amateur triathletes compared to age-matched sedentary controls. We enrolled 11 non-elite triathletes (4 women, age 24±4 years), who had refrained from exercise for 72 hours, and 11 age-matched healthy non-athletes (3 women, age 25±2 years). Comprehensive echocardiographic and cardiopulmonary exercise tests were performed at baseline. Electrocardiogram, non-invasive blood pressure, respiratory activity, and muscle sympathetic nerve activity (MSNA) were continuously recorded in a supine position (REST) and during an incremental 15° step-wise head-up tilt test up to 75° (TILT). Blood samples were collected for determination of stress mediators. Autoregressive spectral analysis provided the indices of the cardiac sympathetic (LFRR) and vagal (HFRR) activity, the vascular sympathetic control (LFSAP), and the cardiac sympatho-vagal modulation (LF/HF). Compared to controls, triathletes were characterized by greater LFRR, LF/HF ratio, LFSAP, MSNA, and lower HFRR at REST and during TILT, i.e. greater overall cardiovascular sympathetic modulation together with lower cardiac vagal activity. Cortisol and adrenocorticotropic hormone concentrations were also higher in triathletes. In conclusion, triathletes were characterized by signs of sustained cardiovascular sympathetic overactivity. This might represent a risk factor for future cardiovascular events, given the known association between chronic excessive sympathetic activity and increased cardiovascular risk.",
author = "{Dalla Vecchia}, {Laura Adelaide} and Franca Barbic and {De Maria}, Beatrice and Domenico Cozzolino and Roberto Gatti and Franca Dipaola and Enrico Brunetta and Zamuner, {Antonio Roberto} and Alberto Porta and Raffaello Furlan",
year = "2019",
doi = "10.1371/journal.pone.0216567",
language = "English",
volume = "14",
pages = "e0216567",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "5",

}

TY - JOUR

T1 - Can strenuous exercise harm the heart?

T2 - Insights from a study of cardiovascular neural regulation in amateur triathletes

AU - Dalla Vecchia, Laura Adelaide

AU - Barbic, Franca

AU - De Maria, Beatrice

AU - Cozzolino, Domenico

AU - Gatti, Roberto

AU - Dipaola, Franca

AU - Brunetta, Enrico

AU - Zamuner, Antonio Roberto

AU - Porta, Alberto

AU - Furlan, Raffaello

PY - 2019

Y1 - 2019

N2 - Regular exercise is recommended to improve the cardiovascular risk profile. However, there is growing evidence that extreme volumes and intensity of long-term exertion may increase the risk of acute cardiac events. The aim of this study is to investigate the after-effects of regular, strenuous physical training on the cardiovascular neural regulation in a group of amateur triathletes compared to age-matched sedentary controls. We enrolled 11 non-elite triathletes (4 women, age 24±4 years), who had refrained from exercise for 72 hours, and 11 age-matched healthy non-athletes (3 women, age 25±2 years). Comprehensive echocardiographic and cardiopulmonary exercise tests were performed at baseline. Electrocardiogram, non-invasive blood pressure, respiratory activity, and muscle sympathetic nerve activity (MSNA) were continuously recorded in a supine position (REST) and during an incremental 15° step-wise head-up tilt test up to 75° (TILT). Blood samples were collected for determination of stress mediators. Autoregressive spectral analysis provided the indices of the cardiac sympathetic (LFRR) and vagal (HFRR) activity, the vascular sympathetic control (LFSAP), and the cardiac sympatho-vagal modulation (LF/HF). Compared to controls, triathletes were characterized by greater LFRR, LF/HF ratio, LFSAP, MSNA, and lower HFRR at REST and during TILT, i.e. greater overall cardiovascular sympathetic modulation together with lower cardiac vagal activity. Cortisol and adrenocorticotropic hormone concentrations were also higher in triathletes. In conclusion, triathletes were characterized by signs of sustained cardiovascular sympathetic overactivity. This might represent a risk factor for future cardiovascular events, given the known association between chronic excessive sympathetic activity and increased cardiovascular risk.

AB - Regular exercise is recommended to improve the cardiovascular risk profile. However, there is growing evidence that extreme volumes and intensity of long-term exertion may increase the risk of acute cardiac events. The aim of this study is to investigate the after-effects of regular, strenuous physical training on the cardiovascular neural regulation in a group of amateur triathletes compared to age-matched sedentary controls. We enrolled 11 non-elite triathletes (4 women, age 24±4 years), who had refrained from exercise for 72 hours, and 11 age-matched healthy non-athletes (3 women, age 25±2 years). Comprehensive echocardiographic and cardiopulmonary exercise tests were performed at baseline. Electrocardiogram, non-invasive blood pressure, respiratory activity, and muscle sympathetic nerve activity (MSNA) were continuously recorded in a supine position (REST) and during an incremental 15° step-wise head-up tilt test up to 75° (TILT). Blood samples were collected for determination of stress mediators. Autoregressive spectral analysis provided the indices of the cardiac sympathetic (LFRR) and vagal (HFRR) activity, the vascular sympathetic control (LFSAP), and the cardiac sympatho-vagal modulation (LF/HF). Compared to controls, triathletes were characterized by greater LFRR, LF/HF ratio, LFSAP, MSNA, and lower HFRR at REST and during TILT, i.e. greater overall cardiovascular sympathetic modulation together with lower cardiac vagal activity. Cortisol and adrenocorticotropic hormone concentrations were also higher in triathletes. In conclusion, triathletes were characterized by signs of sustained cardiovascular sympathetic overactivity. This might represent a risk factor for future cardiovascular events, given the known association between chronic excessive sympathetic activity and increased cardiovascular risk.

U2 - 10.1371/journal.pone.0216567

DO - 10.1371/journal.pone.0216567

M3 - Article

C2 - 31063482

VL - 14

SP - e0216567

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 5

ER -