Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood

Silvia Dragoni, Umberto Laforenza, Elisa Bonetti, Francesco Lodola, Cinzia Bottino, Germano Guerra, Alessandro Borghesi, Mauro Stronati, Vittorio Rosti, Franco Tanzi, Francesco Moccia

Research output: Contribution to journalArticlepeer-review

Abstract

Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca2+ concentration ([Ca2+]i). VEGF-induced Ca2+ spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca2+ release and store-operated Ca2+ entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca2+ entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca 2+ response to VEGF. We found that VEGF induces oscillations in [Ca2+]i that are patterned by the interaction between InsP3-dependent Ca2+ release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca2+ oscillations do not arise in the absence of extracellular Ca2+ entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca2+ spikes. Therefore, the Ca 2+ response to VEGF in UCB-ECFCs is shaped by a different Ca 2+ machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.

Original languageEnglish
Pages (from-to)2561-2580
Number of pages20
JournalStem Cells and Development
Volume22
Issue number19
DOIs
Publication statusPublished - Oct 1 2013

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Hematology

Fingerprint Dive into the research topics of 'Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca<sup>2+</sup> oscillations in endothelial progenitor cells isolated from umbilical cord blood'. Together they form a unique fingerprint.

Cite this