Capillary electrochromatography on methacrylate based monolithic columns: Evaluation of column performance and separation of polyphenols

A. Messina, C. Desiderio, A. De Rossi, F. Bachechi, M. Sinibaldi

Research output: Contribution to journalArticlepeer-review

Abstract

Fused-silica capillary columns (100 μm I.D.) englobing a porous monolithic stationary phase were prepared by in situ copolymerization of 2-ethylhexyl methacrylate, ethylene glycol dimethacrylate and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) in the presence of a porogenic mixture containing 1-propanol, 1,4 butanediol and water. The influence of the monomers ratio and the porogen solvent composition as well as the content of AMPS in the polymerization mixture on column total porosity and efficiency was investigated to attain minimum HETP values for the reversed-phase capillary electrochromatography separation of bioflavonoids. For the most promising column, the van Deemter plots, in both μ-HPLC and CEC, were also evaluated. In CEC the reduced plate height was found almost constant (1.6-2.0) within the range of linear mobile phase velocity between 0.2-2.0 mm s-1. The chemical and mechanical stabilities of the monolithic column over a wide range of buffer pH (2-10) and time were satisfactory. Furthermore, the effects of mobile phase parameters, such as buffer concentration and organic modifier content, on the electroosmotic flow were studied systematically. CEC separations of standard mixtures of polyphenols, including flavonols, flavanones and flavanones-7-O-glycosides, were accomplished in less than 8 min. The CEC separation of the major flavanone glycoside constituents in the extract from a freshly squeezed grapefruit juice was also reported.

Original languageEnglish
Pages (from-to)409-416
Number of pages8
JournalChromatographia
Volume62
Issue number7-8
DOIs
Publication statusPublished - Oct 2005

Keywords

  • Bioflavonoids
  • Capillary electrochromatography
  • Monolithic columns
  • Polymethacrylates
  • Reversed-phase separation

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Analytical Chemistry

Fingerprint Dive into the research topics of 'Capillary electrochromatography on methacrylate based monolithic columns: Evaluation of column performance and separation of polyphenols'. Together they form a unique fingerprint.

Cite this