Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts

Giada Cellot, Emanuele Cilia, Sara Cipollone, Vladimir Rancic, Antonella Sucapane, Silvia Giordani, Luca Gambazzi, Henry Markram, Micaela Grandolfo, Denis Scaini, Fabrizio Gelain, Loredana Casalis, Maurizio Prato, Michele Giugliano, Laura Ballerini

Research output: Contribution to journalArticlepeer-review


Carbon nanotubes have been applied in several areas of nerve tissue engineering to probe and augment cell behaviour, to label and track subcellular components, and to study the growth and organization of neural networks. Recent reports show that nanotubes can sustain and promote neuronal electrical activity in networks of cultured cells, but the ways in which they affect cellular function are still poorly understood. Here, we show, using single-cell electrophysiology techniques, electron microscopy analysis and theoretical modelling, that nanotubes improve the responsiveness of neurons by forming tight contacts with the cell membranes that might favour electrical shortcuts between the proximal and distal compartments of the neuron. We propose the 'electrotonic hypothesis' to explain the physical interactions between the cell and nanotube, and the mechanisms of how carbon nanotubes might affect the collective electrical activity of cultured neuronal networks. These considerations offer a perspective that would allow us to predict or engineer interactions between neurons and carbon nanotubes.

Original languageEnglish
Pages (from-to)126-133
Number of pages8
JournalNature Nanotechnology
Issue number2
Publication statusPublished - Feb 2009

ASJC Scopus subject areas

  • Bioengineering
  • Biomedical Engineering
  • Materials Science(all)
  • Electrical and Electronic Engineering
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts'. Together they form a unique fingerprint.

Cite this