TY - JOUR
T1 - Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas
T2 - Concrete premises for a new reliable diagnostic marker in gliomas
AU - Cassoni, Paola
AU - Senetta, Rebecca
AU - Castellano, Isabella
AU - Ortolan, Erika
AU - Bosco, Martino
AU - Magnani, Ivana
AU - Ducati, Alessandro
PY - 2007/5
Y1 - 2007/5
N2 - Caveolins are basic constituents of flask-shaped cell membrane microdomains (caveolae), which are involved in many cell functions, including signalling, trafficking, and cellular growth control. The distribution of caveolae within the normal brain and in brain tumors is controversial. In the present study, we describe the expression of caveolin-1 (cav-1) in 64 brain tumors of different grade, of either astroglial or oligodendroglial origin. All studied astrocitomas of any grade (from II to IV) were cav-1 positive, displaying staining patterns and intensity specifically associated to the different tumor grades. In all glioblastomas and gliosarcomas, cav-1 staining was extremely intense, typically localized at the cell membrane and recognized a variable percentage of cells, including the majority of spindle cells and palisade-oriented perinecrotic cells. In anaplastic astrocytomas, a less intense membrane staining or a cytoplasmic dotlike immunoreactivity were present, the latter being almost the exclusive pattern observed in diffuse astrocitomas grade II. In contrast to astroglial tumors, the striking totality of grade II oligodendrogliomas and the large majority of grade III were lacking cav-1 expression. Interestingly, a cav-1 distribution overlapping the pattern described in tissues was observed also in primary cell cultures of human glioblastomas and astrocytomas, and also in one established glioblastoma cell line (U251 MG), analyzed by means of confocal microscopy and flow cytometry. In conclusion, among astroglial tumors cav-1 expression varies in distribution, pattern, and intensity specifically according to tumor types and grades. The association between tumor progression and a more structured membranous pattern of cav-1 expression could suggest the hypothesis of a neoplastic shift towards a mesenchymal phenotype, whose behavioral and biologic significance worth further studies. Finally, the lack of cav-1 immunoreactivity in oligodendrogliomas suggests its concrete application as a useful diagnostic marker.
AB - Caveolins are basic constituents of flask-shaped cell membrane microdomains (caveolae), which are involved in many cell functions, including signalling, trafficking, and cellular growth control. The distribution of caveolae within the normal brain and in brain tumors is controversial. In the present study, we describe the expression of caveolin-1 (cav-1) in 64 brain tumors of different grade, of either astroglial or oligodendroglial origin. All studied astrocitomas of any grade (from II to IV) were cav-1 positive, displaying staining patterns and intensity specifically associated to the different tumor grades. In all glioblastomas and gliosarcomas, cav-1 staining was extremely intense, typically localized at the cell membrane and recognized a variable percentage of cells, including the majority of spindle cells and palisade-oriented perinecrotic cells. In anaplastic astrocytomas, a less intense membrane staining or a cytoplasmic dotlike immunoreactivity were present, the latter being almost the exclusive pattern observed in diffuse astrocitomas grade II. In contrast to astroglial tumors, the striking totality of grade II oligodendrogliomas and the large majority of grade III were lacking cav-1 expression. Interestingly, a cav-1 distribution overlapping the pattern described in tissues was observed also in primary cell cultures of human glioblastomas and astrocytomas, and also in one established glioblastoma cell line (U251 MG), analyzed by means of confocal microscopy and flow cytometry. In conclusion, among astroglial tumors cav-1 expression varies in distribution, pattern, and intensity specifically according to tumor types and grades. The association between tumor progression and a more structured membranous pattern of cav-1 expression could suggest the hypothesis of a neoplastic shift towards a mesenchymal phenotype, whose behavioral and biologic significance worth further studies. Finally, the lack of cav-1 immunoreactivity in oligodendrogliomas suggests its concrete application as a useful diagnostic marker.
KW - Brain tumors
KW - Caveolin
KW - Glioblastoma
KW - Marker
KW - Oligodendroglioma
UR - http://www.scopus.com/inward/record.url?scp=34247602549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247602549&partnerID=8YFLogxK
U2 - 10.1097/01.pas.0000213433.14740.5d
DO - 10.1097/01.pas.0000213433.14740.5d
M3 - Article
C2 - 17460461
AN - SCOPUS:34247602549
VL - 31
SP - 760
EP - 769
JO - American Journal of Surgical Pathology
JF - American Journal of Surgical Pathology
SN - 0147-5185
IS - 5
ER -