CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation

Ivan Zanoni, Renato Ostuni, Giusy Capuano, Maddalena Collini, Michele Caccia, Antonella Ellena Ronchi, Marcella Rocchetti, Francesca Mingozzi, Maria Foti, Giuseppe Chirico, Barbara Costa, Antonio Zaza, Paola Ricciardi-Castagnoli, Francesca Granucci

Research output: Contribution to journalArticlepeer-review

Abstract

Toll-like receptors (TLRs) are the best characterized pattern recognition receptors. Individual TLRs recruit diverse combinations of adaptor proteins, triggering signal transduction pathways and leading to the activation of various transcription factors, including nuclear factor B, activation protein 1 and interferon regulatory factors. Interleukin-2 is one of the molecules produced by mouse dendritic cells after stimulation by different pattern recognition receptor agonists. By analogy with the events after T-cell receptor engagement leading to interleukin-2 production, it is therefore plausible that the stimulation of TLRs on dendritic cells may lead to activation of the Ca 2+ /calcineurin and NFAT (nuclear factor of activated T cells) pathway. Here we show that mouse dendritic cell stimulation with lipopolysaccharide (LPS) induces Src-family kinase and phospholipase Cγ2 activation, influx of extracellular Ca 2+ and calcineurin-dependent nuclear NFAT translocation. The initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. We also show that LPS-induced NFAT activation via CD14 is necessary to cause the apoptotic death of terminally differentiated dendritic cells, an event that is essential for maintaining self-tolerance and preventing autoimmunity. Consequently, blocking this pathway in vivo causes prolonged dendritic cell survival and an increase in T-cell priming capability. Our findings reveal novel aspects of molecular signalling triggered by LPS in dendritic cells, and identify a new role for CD14: the regulation of the dendritic cell life cycle through NFAT activation. Given the involvement of CD14 in disease, including sepsis and chronic heart failure, the discovery of signal transduction pathways activated exclusively via CD14 is an important step towards the development of potential treatments involving interference with CD14 functions.

Original languageEnglish
Pages (from-to)264-268
Number of pages5
JournalNature
Volume460
Issue number7252
DOIs
Publication statusPublished - Jul 9 2009

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation'. Together they form a unique fingerprint.

Cite this