TY - JOUR
T1 - CDKN1C/P57 is regulated by the Notch target gene Hes1 and induces senescence in human hepatocellular carcinoma
AU - Giovannini, Catia
AU - Gramantieri, Laura
AU - Minguzzi, Manuela
AU - Fornari, Francesca
AU - Chieco, Pasquale
AU - Grazi, Gian Luca
AU - Bolondi, Luigi
PY - 2012/8
Y1 - 2012/8
N2 - CDKN1C/P57 is a cyclin-dependent kinase inhibitor implicated in different human cancers, including hepatocellular carcinoma (HCC); however, little is known regarding the role of CDKN1C/P57 and its regulation in HCC. In this study, we show that the down-regulation of Notch1 and Notch3 in two HCC cell lines resulted in Hes1 down-regulation, CDKN1C/P57 up-regulation, and reduced cell growth. In line with these data, we report that CDKN1C/P57 is a target of transcriptional repression by the Notch effector, Hes1. We found that the up-regulation of CDKN1C/P57 by cDNA transfection decreased tumor growth, as determined by growth curve, flow cytometry analysis, and cyclin D1 down-regulation, without affecting the apoptosis machinery. Indeed, the expression of Bax, Noxa, PUMA, BNIP3, and cleaved caspase-3 was not affected by CDKN1C/P57 induction. Morphologically CDKN1C/p57-induced HCC cells became flat and lengthened in shape, accumulated the senescence-associated β-galactosidase marker, and increased P16 protein expression. Evaluation of senescence in cells depleted both for Hes1 and CDKN1C/P57 revealed that the senescent state really depends on the accumulation of CDKN1C/p57. Finally, we validated our in vitro results in primary HCCs, showing that Hes1 protein expression inversely correlates with CDKN1C/P57 mRNA levels. In addition, reduced Hes1 protein expression is accompanied by a shorter time to recurrence after curative resection, suggesting that Hes1 may represent a biomarker for prediction of patients with poor prognosis.
AB - CDKN1C/P57 is a cyclin-dependent kinase inhibitor implicated in different human cancers, including hepatocellular carcinoma (HCC); however, little is known regarding the role of CDKN1C/P57 and its regulation in HCC. In this study, we show that the down-regulation of Notch1 and Notch3 in two HCC cell lines resulted in Hes1 down-regulation, CDKN1C/P57 up-regulation, and reduced cell growth. In line with these data, we report that CDKN1C/P57 is a target of transcriptional repression by the Notch effector, Hes1. We found that the up-regulation of CDKN1C/P57 by cDNA transfection decreased tumor growth, as determined by growth curve, flow cytometry analysis, and cyclin D1 down-regulation, without affecting the apoptosis machinery. Indeed, the expression of Bax, Noxa, PUMA, BNIP3, and cleaved caspase-3 was not affected by CDKN1C/P57 induction. Morphologically CDKN1C/p57-induced HCC cells became flat and lengthened in shape, accumulated the senescence-associated β-galactosidase marker, and increased P16 protein expression. Evaluation of senescence in cells depleted both for Hes1 and CDKN1C/P57 revealed that the senescent state really depends on the accumulation of CDKN1C/p57. Finally, we validated our in vitro results in primary HCCs, showing that Hes1 protein expression inversely correlates with CDKN1C/P57 mRNA levels. In addition, reduced Hes1 protein expression is accompanied by a shorter time to recurrence after curative resection, suggesting that Hes1 may represent a biomarker for prediction of patients with poor prognosis.
UR - http://www.scopus.com/inward/record.url?scp=84864150714&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864150714&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2012.04.019
DO - 10.1016/j.ajpath.2012.04.019
M3 - Article
C2 - 22705236
AN - SCOPUS:84864150714
VL - 181
SP - 413
EP - 422
JO - American Journal of Pathology
JF - American Journal of Pathology
SN - 0002-9440
IS - 2
ER -