Cell cycle dependent alterations of chromatin structure in situ as revealed by the accessibility of the nuclear protein AF-2 to monoclonal antibodies

U. Pfeffer, A. Di Vinci, E. Geido, G. Vidali, W. Giaretti

Research output: Contribution to journalArticlepeer-review

Abstract

We have recently described a novel nuclear antigen, AF-2, which is related to cell cycle dependent alterations of chromatin structure. We show by two parameter flow cytometry on a cell by cell basis that the antigen is accessible to specific monoclonal antibodies only in mitotic and postmitotic early G1-phase cells. The evaluation of nuclease susceptibility and AF-2 antigen accessibility reveals different subcompartments of the G1-phase of the cell cycle with distinct chromatin conformations. Digestion with DNase I seems to alter the chromatin structure according to concentration and this is reflected by an increase of the antigen accessibility. Chromatin in the more condensed early G1-phase is specifically digested by lower concentrations of the enzyme than chromatin in later stages of interphase. Chromatin from cells in the late-G1, S-, and G2-phases shows a higher relative resistance to DNase I and a reduced accessibility of the AF-2 antigen to monoclonal antibodies. nuclease S 1 has a similar effect on chromatin topology, as revealed by the reaction with anti-AF-2 antibodies, without digestion of detectable amounts of DNA. The antigen becomes available to the antibodies in almost all cells by digestion with high concentrations of DNase I or Nuclease S 1.

Original languageEnglish
Pages (from-to)567-574
Number of pages8
JournalJournal of Cellular Physiology
Volume149
Issue number3
DOIs
Publication statusPublished - 1991

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology

Fingerprint

Dive into the research topics of 'Cell cycle dependent alterations of chromatin structure in situ as revealed by the accessibility of the nuclear protein AF-2 to monoclonal antibodies'. Together they form a unique fingerprint.

Cite this